Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense

Gonzalez-Perez MN, Murcia MI, Parra-Lopez C, Blom J, Tauch A (2016)
New Microbes and New Infections 14: 98-105.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gonzalez-Perez, M.N.; Murcia, M.I.; Parra-Lopez, C.; Blom, J.; Tauch, AndreasUniBi
Abstract / Bemerkung
Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M.colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M.colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information not only sheds light on our understanding the virulence mechanisms used by opportunistic MAC pathogens but also has great potential for the designing of species-specific diagnostic tools.
Stichworte
Genomic islands; Mycobacterium colombiense; nontuberculous mycobacteria; tuberculosis; virulence factors
Erscheinungsjahr
2016
Zeitschriftentitel
New Microbes and New Infections
Band
14
Seite(n)
98-105
ISSN
2052-2975
Page URI
https://pub.uni-bielefeld.de/record/2907322

Zitieren

Gonzalez-Perez MN, Murcia MI, Parra-Lopez C, Blom J, Tauch A. Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense. New Microbes and New Infections. 2016;14:98-105.
Gonzalez-Perez, M. N., Murcia, M. I., Parra-Lopez, C., Blom, J., & Tauch, A. (2016). Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense. New Microbes and New Infections, 14, 98-105. doi:10.1016/j.nmni.2016.09.007
Gonzalez-Perez, M.N., Murcia, M.I., Parra-Lopez, C., Blom, J., and Tauch, Andreas. 2016. “Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense”. New Microbes and New Infections 14: 98-105.
Gonzalez-Perez, M. N., Murcia, M. I., Parra-Lopez, C., Blom, J., and Tauch, A. (2016). Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense. New Microbes and New Infections 14, 98-105.
Gonzalez-Perez, M.N., et al., 2016. Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense. New Microbes and New Infections, 14, p 98-105.
M.N. Gonzalez-Perez, et al., “Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense”, New Microbes and New Infections, vol. 14, 2016, pp. 98-105.
Gonzalez-Perez, M.N., Murcia, M.I., Parra-Lopez, C., Blom, J., Tauch, A.: Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense. New Microbes and New Infections. 14, 98-105 (2016).
Gonzalez-Perez, M.N., Murcia, M.I., Parra-Lopez, C., Blom, J., and Tauch, Andreas. “Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense”. New Microbes and New Infections 14 (2016): 98-105.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

50 References

Daten bereitgestellt von Europe PubMed Central.

An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases.
Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America., Am. J. Respir. Crit. Care Med. 175(4), 2007
PMID: 17277290
Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant
Murcia, Int J Syst Evol Microbiol 56(pt 9), 2006
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG., Mol. Syst. Biol. 7(), 2011
PMID: 21988835
PIPS: pathogenicity island prediction software.
Soares SC, Abreu VA, Ramos RT, Cerdeira L, Silva A, Baumbach J, Trost E, Tauch A, Hirata R Jr, Mattos-Guaraldi AL, Miyoshi A, Azevedo V., PLoS ONE 7(2), 2012
PMID: 22355329
PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data.
Cosentino S, Voldby Larsen M, Moller Aarestrup F, Lund O., PLoS ONE 8(10), 2013
PMID: 24204795
VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors
Chen, Nucleic Acids Res 40(database issue), 2012
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
Combined prediction of Tat and Sec signal peptides with hidden Markov models.
Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD., Bioinformatics 26(22), 2010
PMID: 20847219
Prediction of lipoprotein signal peptides in Gram-positive bacteria with a hidden Markov model
Bagos, J Proteome Res 7(), 2008
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes
Krogh, J Mol Biol 305(), 2001

Fimereli, 2012
CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats.
Grissa I, Vergnaud G, Pourcel C., Nucleic Acids Res. 35(Web Server issue), 2007
PMID: 17537822
Cysteine desulphurase–encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens
Bhubhanil, Microbiology 160(pt 1), 2014
Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis.
Feder V, Kmetzsch L, Staats CC, Vidal-Figueiredo N, Ligabue-Braun R, Carlini CR, Vainstein MH., FEBS J. 282(8), 2015
PMID: 25675897
LppM impact on the colonization of macrophages by Mycobacterium tuberculosis
Deboosere, Cell Microbiol (), 2016
The molecular biology of mycobacterial trehalose in the quest for advanced tuberculosis therapies
Nobre, Microbiology 160(pt 8), 2014
Redox biology of tuberculosis pathogenesis.
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A., Adv. Microb. Physiol. 60(), 2012
PMID: 22633061
Antigen 85C-mediated acyl-transfer between synthetic acyl donors and fragments of the arabinan.
Sanki AK, Boucau J, Ronning DR, Sucheck SJ., Glycoconj. J. 26(5), 2008
PMID: 19052863
Detecting novel genetic variants associated with isoniazid-resistant Mycobacterium tuberculosis.
Shekar S, Yeo ZX, Wong JC, Chan MK, Ong DC, Tongyoo P, Wong SY, Lee AS., PLoS ONE 9(7), 2014
PMID: 25025225
Protein kinase G from pathogenic mycobacteria promotes survival within macrophages.
Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J., Science 304(5678), 2004
PMID: 15155913
Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity.
Sun J, Singh V, Lau A, Stokes RW, Obregon-Henao A, Orme IM, Wong D, Av-Gay Y, Hmama Z., PLoS Pathog. 9(7), 2013
PMID: 23874203
Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine RAW 264.7 macrophages.
Sun J, Wang X, Lau A, Liao TY, Bucci C, Hmama Z., PLoS ONE 5(1), 2010
PMID: 20098737
The ins and outs of Mycobacterium tuberculosis protein export.
Ligon LS, Hayden JD, Braunstein M., Tuberculosis (Edinb) 92(2), 2011
PMID: 22192870
Transient requirement of the PrrA-PrrB two-component system for early intracellular multiplication of Mycobacterium tuberculosis.
Ewann F, Jackson M, Pethe K, Cooper A, Mielcarek N, Ensergueix D, Gicquel B, Locht C, Supply P., Infect. Immun. 70(5), 2002
PMID: 11953357
MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response
Pang, J Bacteriol 195(), 2013
The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis.
Solans L, Gonzalo-Asensio J, Sala C, Benjak A, Uplekar S, Rougemont J, Guilhot C, Malaga W, Martin C, Cole ST., PLoS Pathog. 10(5), 2014
PMID: 24874799
Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models.
Converse PJ, Karakousis PC, Klinkenberg LG, Kesavan AK, Ly LH, Allen SS, Grosset JH, Jain SK, Lamichhane G, Manabe YC, McMurray DN, Nuermberger EL, Bishai WR., Infect. Immun. 77(3), 2008
PMID: 19103767
Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis
Rodriguez, J Bacteriol 188(), 2006
Mechanistic insights into a novel exporter-importer system of Mycobacterium tuberculosis unravel its role in trafficking of iron.
Farhana A, Kumar S, Rathore SS, Ghosh PC, Ehtesham NZ, Tyagi AK, Hasnain SE., PLoS ONE 3(5), 2008
PMID: 18461140
Mycobacterial Esx-3 requires multiple components for iron acquisition
Siegrist, mBio 5(), 2014
Sulfolipid-1 biosynthesis restricts Mycobacterium tuberculosis growth in human macrophages.
Gilmore SA, Schelle MW, Holsclaw CM, Leigh CD, Jain M, Cox JS, Leary JA, Bertozzi CR., ACS Chem. Biol. 7(5), 2012
PMID: 22360425
Effect of Mycobacterium tuberculosis-derived sulfolipid I on human phagocytic cells.
Zhang L, Goren MB, Holzer TJ, Andersen BR., Infect. Immun. 56(11), 1988
PMID: 2844675
Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis.
Goren MB, D'Arcy Hart P, Young MR, Armstrong JA., Proc. Natl. Acad. Sci. U.S.A. 73(7), 1976
PMID: 821057
Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis
Seeliger, J Biol Chem 287(), 2012
The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis
Sirakova, J Biol Chem 276(), 2001
Mycobacterium tuberculosis expressing phospholipase C subverts PGE2 synthesis and induces necrosis in alveolar macrophages.
Assis PA, Espindola MS, Paula-Silva FW, Rios WM, Pereira PA, Leao SC, Silva CL, Faccioli LH., BMC Microbiol. 14(), 2014
PMID: 24886263
Type VII secretion--mycobacteria show the way.
Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W., Nat. Rev. Microbiol. 5(11), 2007
PMID: 17922044

Renshaw, J Biol Chem 277(), 2002
Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death.
Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J., PLoS Pathog. 8(2), 2012
PMID: 22319448
Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog
Cunningham, J Bacteriol 180(), 1998
Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae.
Ripoll F, Deshayes C, Pasek S, Laval F, Beretti JL, Biet F, Risler JL, Daffe M, Etienne G, Gaillard JL, Reyrat JM., BMC Genomics 8(), 2007
PMID: 17490474
MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis.
Deshayes C, Bach H, Euphrasie D, Attarian R, Coureuil M, Sougakoff W, Laval F, Av-Gay Y, Daffe M, Etienne G, Reyrat JM., Mol. Microbiol. 78(4), 2010
PMID: 21062372
Involvement of mannose receptor in glycopeptidolipid-mediated inhibition of phagosome-lysosome fusion.
Shimada K, Takimoto H, Yano I, Kumazawa Y., Microbiol. Immunol. 50(3), 2006
PMID: 16547422
Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner
Sweet, J Leukoc Biol 80(), 2006
Virulence and immune response induced by Mycobacterium avium complex strains in a model of progressive pulmonary tuberculosis and subcutaneous infection in BALB/c mice.
Gonzalez-Perez M, Marino-Ramirez L, Parra-Lopez CA, Murcia MI, Marquina B, Mata-Espinoza D, Rodriguez-Miguez Y, Baay-Guzman GJ, Huerta-Yepez S, Hernandez-Pando R., Infect. Immun. 81(11), 2013
PMID: 23959717
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 27818776
PubMed | Europe PMC

Suchen in

Google Scholar