Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage

Freyre-González JA, Tauch A (2017)
Journal of Biotechnology 257: 199-210.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Freyre-González, Julio A.; Tauch, AndreasUniBi
Abstract / Bemerkung
Corynebacterium glutamicum is a Gram-positive, anaerobic, rod-shaped soil bacterium able to grow on a diversity of carbon sources like sugars and organic acids. It is a biotechnological relevant organism because of its highly efficient ability to biosynthesize amino acids, such as l-glutamic acid and l-lysine. Here, we reconstructed the most complete C. glutamicum regulatory network to date and comprehensively analyzed its global organizational properties, systems-level features and functional architecture. Our analyses show the tremendous power of Abasy Atlas to study the functional organization of regulatory networks. We created two models of the C. glutamicum regulatory network: all-evidences (containing both weak and strong supported interactions, genomic coverage = 73%) and strongly-supported (only accounting for strongly supported evidences, genomic coverage = 71%). Using state-of-the-art methodologies, we prove that power-law behaviors truly govern the connectivity and clustering coefficient distributions. We found a non-previously reported circuit motif that we named complex feed-forward motif. We highlighted the importance of feedback loops for the functional architecture, beyond whether they are statistically over-represented or not in the network. We show that the previously reported top-down approach is inadequate to infer the hierarchy governing a regulatory network because feedback bridges different hierarchical layers, and the top-down approach disregards the presence of intermodular genes shaping the integration layer. Our findings all together further support a diamond-shaped, three-layered hierarchy exhibiting some feedback between processing and coordination layers, which is shaped by four classes of systems-level elements: global regulators, locally autonomous modules, basal machinery and intermodular genes.
Stichworte
Corynebacterium glutamicum; Regulatory network; Global regulators; Modules; Intermodular genes; Functional architecture
Erscheinungsjahr
2017
Zeitschriftentitel
Journal of Biotechnology
Band
257
Seite(n)
199-210
ISSN
0168-1656
eISSN
1873-4863
Page URI
https://pub.uni-bielefeld.de/record/2907317

Zitieren

Freyre-González JA, Tauch A. Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage. Journal of Biotechnology. 2017;257:199-210.
Freyre-González, J. A., & Tauch, A. (2017). Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage. Journal of Biotechnology, 257, 199-210. doi:10.1016/j.jbiotec.2016.10.025
Freyre-González, Julio A., and Tauch, Andreas. 2017. “Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage”. Journal of Biotechnology 257: 199-210.
Freyre-González, J. A., and Tauch, A. (2017). Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage. Journal of Biotechnology 257, 199-210.
Freyre-González, J.A., & Tauch, A., 2017. Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage. Journal of Biotechnology, 257, p 199-210.
J.A. Freyre-González and A. Tauch, “Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage”, Journal of Biotechnology, vol. 257, 2017, pp. 199-210.
Freyre-González, J.A., Tauch, A.: Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage. Journal of Biotechnology. 257, 199-210 (2017).
Freyre-González, Julio A., and Tauch, Andreas. “Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage”. Journal of Biotechnology 257 (2017): 199-210.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

56 References

Daten bereitgestellt von Europe PubMed Central.

Network motifs: theory and experimental approaches.
Alon U., Nat. Rev. Genet. 8(6), 2007
PMID: 17510665
Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G., Nat. Genet. 25(1), 2000
PMID: 10802651
Topological sensitivity analysis for systems biology.
Babtie AC, Kirk P, Stumpf MP., Proc. Natl. Acad. Sci. U.S.A. 111(52), 2014
PMID: 25512544
MEME: discovering and analyzing DNA and protein sequence motifs.
Bailey TL, Williams N, Misleh C, Li WW., Nucleic Acids Res. 34(Web Server issue), 2006
PMID: 16845028
Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli.
Balazsi G, Barabasi AL, Oltvai ZN., Proc. Natl. Acad. Sci. U.S.A. 102(22), 2005
PMID: 15908506
Network biology: understanding the cell's functional organization.
Barabasi AL, Oltvai ZN., Nat. Rev. Genet. 5(2), 2004
PMID: 14735121
Linking Cytoscape and the corynebacterial reference database CoryneRegNet.
Baumbach J, Apeltsin L., BMC Genomics 9(), 2008
PMID: 18426593
CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks.
Baumbach J, Brinkrolf K, Czaja LF, Rahmann S, Tauch A., BMC Genomics 7(), 2006
PMID: 16478536
Power-law distributions in empirical data
Clauset, SIAM Rev. 51(), 2009
Feed-forward loop circuits as a side effect of genome evolution.
Cordero OX, Hogeweg P., Mol. Biol. Evol. 23(10), 2006
PMID: 16840361
Analyzing regulatory networks in bacteria
Freyre-Gonzalez, Nat. Educ. 3(), 2010
Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach.
Freyre-Gonzalez JA, Alonso-Pavon JA, Trevino-Quintanilla LG, Collado-Vides J., Genome Biol. 9(10), 2008
PMID: 18954463
Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach.
Freyre-Gonzalez JA, Trevino-Quintanilla LG, Valtierra-Gutierrez IA, Gutierrez-Rios RM, Alonso-Pavon JA., J. Biotechnol. 161(3), 2012
PMID: 22728391
Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis.
Freyre-Gonzalez JA, Manjarrez-Casas AM, Merino E, Martinez-Nunez M, Perez-Rueda E, Gutierrez-Rios RM., BMC Syst Biol 7(), 2013
PMID: 24237659
Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA.
Frunzke J, Gatgens C, Brocker M, Bott M., J. Bacteriol. 193(5), 2011
PMID: 21217007
The GOA database: gene Ontology annotation updates for 2015.
Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, O'Donovan C., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25378336
Abasy Atlas: a comprehensive inventory of systems, global network properties and systems-level elements across bacteria.
Ibarra-Arellano MA, Campos-Gonzalez AI, Trevino-Quintanilla LG, Tauch A, Freyre-Gonzalez JA., Database (Oxford) 2016(), 2016
PMID: 27242034
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
Network motifs: structure does not determine function.
Ingram PJ, Stumpf MP, Stark J., BMC Genomics 7(), 2006
PMID: 16677373
Transcriptional regulation shapes the organization of genes on bacterial chromosomes.
Janga SC, Salgado H, Martinez-Antonio A., Nucleic Acids Res. 37(11), 2009
PMID: 19372274
High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum.
Jungwirth B, Sala C, Kohl TA, Uplekar S, Baumbach J, Cole ST, Puhler A, Tauch A., Microbiology (Reading, Engl.) 159(Pt 1), 2012
PMID: 23103979
Stochasticity in gene expression: from theories to phenotypes.
Kaern M, Elston TC, Blake WJ, Collins JJ., Nat. Rev. Genet. 6(6), 2005
PMID: 15883588
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
The powerful law of the power law and other myths in network biology.
Lima-Mendez G, van Helden J., Mol Biosyst 5(12), 2009
PMID: 20023717
An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs.
Ma HW, Kumar B, Ditges U, Gunzer F, Buer J, Zeng AP., Nucleic Acids Res. 32(22), 2004
PMID: 15604458
Specialized or flexible feed-forward loop motifs: a question of topology.
Macia J, Widder S, Sole R., BMC Syst Biol 3(), 2009
PMID: 19719842
Structure and function of the feed-forward loop network motif.
Mangan S, Alon U., Proc. Natl. Acad. Sci. U.S.A. 100(21), 2003
PMID: 14530388
Identifying global regulators in transcriptional regulatory networks in bacteria.
Martinez-Antonio A, Collado-Vides J., Curr. Opin. Microbiol. 6(5), 2003
PMID: 14572541
An evolutionary and functional assessment of regulatory network motifs.
Mazurie A, Bottani S, Vergassola M., Genome Biol. 6(4), 2005
PMID: 15833122
Network motifs: simple building blocks of complex networks.
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U., Science 298(5594), 2002
PMID: 12399590
RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.
Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov MD, Riehl W, Arkin AP, Dubchak I, Rodionov DA., BMC Genomics 14(), 2013
PMID: 24175918
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12.
Perez-Rueda E, Collado-Vides J., Nucleic Acids Res. 28(8), 2000
PMID: 10734204
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
Modular analysis of the transcriptional regulatory network of E. coli.
Resendis-Antonio O, Freyre-Gonzalez JA, Menchaca-Mendez R, Gutierrez-Rios RM, Martinez-Antonio A, Avila-Sanchez C, Collado-Vides J., Trends Genet. 21(1), 2005
PMID: 15680508
On the basic computational structure of gene regulatory networks.
Rodriguez-Caso C, Corominas-Murtra B, Sole RV., Mol Biosyst 5(12), 2009
PMID: 19763330
How little do we actually know? On the size of gene regulatory networks.
Rottger R, Ruckert U, Taubert J, Baumbach J., IEEE/ACM Trans Comput Biol Bioinform 9(5), 2012
PMID: 22585140
Network motifs in the transcriptional regulation network of Escherichia coli.
Shen-Orr SS, Milo R, Mangan S, Alon U., Nat. Genet. 31(1), 2002
PMID: 11967538
Phenotypic variation in bacteria: the role of feedback regulation.
Smits WK, Kuipers OP, Veening JW., Nat. Rev. Microbiol. 4(4), 2006
PMID: 16541134
Are network motifs the spandrels of cellular complexity?
Sole RV, Valverde S., Trends Ecol. Evol. (Amst.) 21(8), 2006
PMID: 16764967
From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli.
Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J., Bioessays 20(5), 1998
PMID: 9670816
Laws for the dynamics of regulatory networks.
Thomas R., Int. J. Dev. Biol. 42(3), 1998
PMID: 9654035
Multiple functions of a feed-forward-loop gene circuit.
Wall ME, Dunlop MJ, Hlavacek WS., J. Mol. Biol. 349(3), 2005
PMID: 15890368
Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks.
Yan KK, Fang G, Bhardwaj N, Alexander RP, Gerstein M., Proc. Natl. Acad. Sci. U.S.A. 107(20), 2010
PMID: 20439753
Genomic analysis of the hierarchical structure of regulatory networks.
Yu H, Gerstein M., Proc. Natl. Acad. Sci. U.S.A. 103(40), 2006
PMID: 17003135
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27829123
PubMed | Europe PMC

Suchen in

Google Scholar