Effects of kasugamycin on the translatome of Escherichia coli

Lange C, Lehr M, Zerulla K, Ludwig P, Schweitzer J, Polen T, Wendisch VF, Soppa J (2017)
PlosONE 12(1): e0168143.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
PlosONE
Band
12
Ausgabe
1
Art.-Nr.
e0168143
ISSN
PUB-ID

Zitieren

Lange C, Lehr M, Zerulla K, et al. Effects of kasugamycin on the translatome of Escherichia coli. PlosONE. 2017;12(1): e0168143.
Lange, C., Lehr, M., Zerulla, K., Ludwig, P., Schweitzer, J., Polen, T., Wendisch, V. F., et al. (2017). Effects of kasugamycin on the translatome of Escherichia coli. PlosONE, 12(1), e0168143. doi:10.1371/journal.pone.0168143
Lange, C., Lehr, M., Zerulla, K., Ludwig, P., Schweitzer, J., Polen, T., Wendisch, V. F., and Soppa, J. (2017). Effects of kasugamycin on the translatome of Escherichia coli. PlosONE 12:e0168143.
Lange, C., et al., 2017. Effects of kasugamycin on the translatome of Escherichia coli. PlosONE, 12(1): e0168143.
C. Lange, et al., “Effects of kasugamycin on the translatome of Escherichia coli”, PlosONE, vol. 12, 2017, : e0168143.
Lange, C., Lehr, M., Zerulla, K., Ludwig, P., Schweitzer, J., Polen, T., Wendisch, V.F., Soppa, J.: Effects of kasugamycin on the translatome of Escherichia coli. PlosONE. 12, : e0168143 (2017).
Lange, Christian, Lehr, Matthias, Zerulla, Karolin, Ludwig, Pete, Schweitzer, Jens, Polen, Tino, Wendisch, Volker F., and Soppa, Jörg. “Effects of kasugamycin on the translatome of Escherichia coli”. PlosONE 12.1 (2017): e0168143.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation.
Chaudhuri S, Li L, Zimmerman M, Chen Y, Chen YX, Toosky MN, Gardner M, Pan M, Li YY, Kawaji Q, Zhu JH, Su HW, Martinot AJ, Rubin EJ, Dartois VA, Javid B., Elife 7(), 2018
PMID: 30152756
Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum.
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P., Front Microbiol 8(), 2017
PMID: 28484430
Evidence for a cytoplasmic pool of ribosome-free mRNAs encoding inner membrane proteins in Escherichia coli.
Benhalevy D, Biran I, Bochkareva ES, Sorek R, Bibi E., PLoS One 12(8), 2017
PMID: 28841711

45 References

Daten bereitgestellt von Europe PubMed Central.

Kasugamycin, a new antibiotic.
Umezawa H, Hamada M, Suhara Y, Hashimoto T, Ikekawa T., Antimicrob Agents Chemother (Bethesda) 5(), 1965
PMID: 5883494
Kasugamycin and kasugamycin-fungicide mixtures for managing bacterial spot of tomato
AUTHOR UNKNOWN, 2012
Management of Leaf Spot/Blight of Heliconia Caused by [Drechslera State of Trichometasphaeria holmii] Using Fungicides
AUTHOR UNKNOWN, 2012
Re-discovery of kasugamycin for managing fire blight and other bacterial diseases of plants in the United States
AUTHOR UNKNOWN, 2010
Comparison of Kasugamycin to traditional bactericides for the management of bacterial spot on tomato
AUTHOR UNKNOWN, 2010
[Clinical use of Kasugamycin for urinary tract infections due to Pseudomonas aeruginosa].
Ishigami J, Fukuda Y, Hara S., J Antibiot B 20(2), 1967
PMID: 5299159
The binding of kasugamycin to the Escherichia coli ribosomes.
Okuyama A, Tanaka N, Komai T., J. Antibiot. 28(11), 1975
PMID: 1104550
The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation.
Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Shirouzu M, Shirouzo M, Nierhaus KH, Yokoyama S, Fucini P., Nat. Struct. Mol. Biol. 13(10), 2006
PMID: 16998488
Structural analysis of kasugamycin inhibition of translation.
Schuwirth BS, Day JM, Hau CW, Janssen GR, Dahlberg AE, Cate JH, Vila-Sanjurjo A., Nat. Struct. Mol. Biol. 13(10), 2006
PMID: 16998486
Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs.
Moll I, Hirokawa G, Kiel MC, Kaji A, Blasi U., Nucleic Acids Res. 32(11), 2004
PMID: 15215335
Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq).
Babski J, Haas KA, Nather-Schindler D, Pfeiffer F, Forstner KU, Hammelmann M, Hilker R, Becker A, Sharma CM, Marchfelder A, Soppa J., BMC Genomics 17(1), 2016
PMID: 27519343
A novel mechanism for translation initiation operates in haloarchaea.
Hering O, Brenneis M, Beer J, Suess B, Soppa J., Mol. Microbiol. 71(6), 2009
PMID: 19210623
A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors.
Andreev DE, Terenin IM, Dunaevsky YE, Dmitriev SE, Shatsky IN., Mol. Cell. Biol. 26(8), 2006
PMID: 16581790
Temperature-dependent translation of leaderless and canonical mRNAs in Escherichia coli.
Grill S, Moll I, Giuliodori AM, Gualerzi CO, Blasi U., FEMS Microbiol. Lett. 211(2), 2002
PMID: 12076807
Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control.
Moll I, Grill S, Gualerzi CO, Blasi U., Mol. Microbiol. 43(1), 2002
PMID: 11849551
Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5'-terminal AUG.
Brock JE, Pourshahian S, Giliberti J, Limbach PA, Janssen GR., RNA 14(10), 2008
PMID: 18755843
Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis.
Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I, Aebersold R, Young DB., Cell Rep 5(4), 2013
PMID: 24268774
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti.
de Groot A, Roche D, Fernandez B, Ludanyi M, Cruveiller S, Pignol D, Vallenet D, Armengaud J, Blanchard L., Genome Biol Evol 6(4), 2014
PMID: 24723731
Anatomy of Escherichia coli ribosome binding sites.
Shultzaberger RK, Bucheimer RE, Rudd KE, Schneider TD., J. Mol. Biol. 313(1), 2001
PMID: 11601857
Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110
AUTHOR UNKNOWN, 2006
Interfering with different steps of protein synthesis explored by transcriptional profiling of Escherichia coli K-12.
Sabina J, Dover N, Templeton LJ, Smulski DR, Soll D, LaRossa RA., J. Bacteriol. 185(20), 2003
PMID: 14526028
An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis?
Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I., Mol. Cell 33(2), 2009
PMID: 19187763
Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli.
Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B, Jimenez-Jacinto V, Salgado H, Juarez K, Contreras-Moreira B, Huerta AM, Collado-Vides J, Morett E., PLoS ONE 4(10), 2009
PMID: 19838305
RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more.
Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado L, Garcia-Sotelo JS, Weiss V, Solano-Lira H, Martinez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernandez S, Alquicira-Hernandez K, Lopez-Fuentes A, Porron-Sotelo L, Huerta AM, Bonavides-Martinez C, Balderas-Martinez YI, Pannier L, Olvera M, Labastida A, Jimenez-Jacinto V, Vega-Alvarado L, Del Moral-Chavez V, Hernandez-Alvarez A, Morett E, Collado-Vides J., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23203884
Translational termination-reinitiation in RNA viruses.
Powell ML., Biochem. Soc. Trans. 38(6), 2010
PMID: 21118126
Scanning model for translation reinitiation in eubacteria
AUTHOR UNKNOWN, 1990
Resistance of lambda cI translation to antibiotics that inhibit translation initiation.
Chin K, Shean CS, Gottesman ME., J. Bacteriol. 175(22), 1993
PMID: 8226693
A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing
AUTHOR UNKNOWN, 2014
Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea.
Lange C, Zaigler A, Hammelmann M, Twellmeyer J, Raddatz G, Schuster SC, Oesterhelt D, Soppa J., BMC Genomics 8(), 2007
PMID: 17997854
Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays.
Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S., Anal. Biochem. 290(2), 2001
PMID: 11237321
EcoGene 3.0.
Zhou J, Rudd KE., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23197660
Genome information management and integrated data analysis with HaloLex.
Pfeiffer F, Broicher A, Gillich T, Klee K, Mejia J, Rampp M, Oesterhelt D., Arch. Microbiol. 190(3), 2008
PMID: 18592220
Displaying the information contents of structural RNA alignments: the structure logos.
Gorodkin J, Heyer LJ, Brunak S, Stormo GD., Comput. Appl. Biosci. 13(6), 1997
PMID: 9475985
MEME SUITE: tools for motif discovery and searching.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19458158

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28081129
PubMed | Europe PMC

Suchen in

Google Scholar