Nanoscopy of bacterial cells immobilized by holographic optical tweezers

Diekmann R, Wolfson D, Spahn C, Heilemann M, Schüttpelz M, Huser T (2016)
Nature Communications 7(1): 13711.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Diekmann, Robin; Wolfson, Deanna; Spahn, Christoph; Heilemann, Mike; Schüttpelz, MarkUniBi ; Huser, ThomasUniBi
Erscheinungsjahr
2016
Zeitschriftentitel
Nature Communications
Band
7
Ausgabe
1
Art.-Nr.
13711
ISSN
2041-1723
Page URI
https://pub.uni-bielefeld.de/record/2907008

Zitieren

Diekmann R, Wolfson D, Spahn C, Heilemann M, Schüttpelz M, Huser T. Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nature Communications. 2016;7(1): 13711.
Diekmann, R., Wolfson, D., Spahn, C., Heilemann, M., Schüttpelz, M., & Huser, T. (2016). Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nature Communications, 7(1), 13711. doi:10.1038/ncomms13711
Diekmann, Robin, Wolfson, Deanna, Spahn, Christoph, Heilemann, Mike, Schüttpelz, Mark, and Huser, Thomas. 2016. “Nanoscopy of bacterial cells immobilized by holographic optical tweezers”. Nature Communications 7 (1): 13711.
Diekmann, R., Wolfson, D., Spahn, C., Heilemann, M., Schüttpelz, M., and Huser, T. (2016). Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nature Communications 7:13711.
Diekmann, R., et al., 2016. Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nature Communications, 7(1): 13711.
R. Diekmann, et al., “Nanoscopy of bacterial cells immobilized by holographic optical tweezers”, Nature Communications, vol. 7, 2016, : 13711.
Diekmann, R., Wolfson, D., Spahn, C., Heilemann, M., Schüttpelz, M., Huser, T.: Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nature Communications. 7, : 13711 (2016).
Diekmann, Robin, Wolfson, Deanna, Spahn, Christoph, Heilemann, Mike, Schüttpelz, Mark, and Huser, Thomas. “Nanoscopy of bacterial cells immobilized by holographic optical tweezers”. Nature Communications 7.1 (2016): 13711.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography.
Schürmann M, Cojoc G, Girardo S, Ulbricht E, Guck J, Müller P., J Biophotonics 11(3), 2018
PMID: 28800386
Inhomogeneity-Induced Casimir Transport of Nanoparticles.
Bao F, Shi K, Cao G, Evans JS, He S., Phys Rev Lett 121(13), 2018
PMID: 30312057
Breaking the speed limit with multimode fast scanning of DNA by Endonuclease V.
Ahmadi A, Rosnes I, Blicher P, Diekmann R, Schüttpelz M, Glette K, Tørresen J, Bjørås M, Dalhus B, Rowe AD., Nat Commun 9(1), 2018
PMID: 30568191
Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects.
Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C, Qiu CW., Light Sci Appl 6(9), 2017
PMID: 30167291

33 References

Daten bereitgestellt von Europe PubMed Central.

Far-field optical nanoscopy.
Hell SW., Science 316(5828), 2007
PMID: 17525330
Imaging intracellular fluorescent proteins at nanometer resolution.
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF., Science 313(5793), 2006
PMID: 16902090
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).
Rust MJ, Bates M, Zhuang X., Nat. Methods 3(10), 2006
PMID: 16896339
Super-resolution video microscopy of live cells by structured illumination.
Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG., Nat. Methods 6(5), 2009
PMID: 19404253
Super-resolution 3D microscopy of live whole cells using structured illumination.
Shao L, Kner P, Rego EH, Gustafsson MG., Nat. Methods 8(12), 2011
PMID: 22002026
Nanoscopy with more than 100,000 'doughnuts'.
Chmyrov A, Keller J, Grotjohann T, Ratz M, d'Este E, Jakobs S, Eggeling C, Hell SW., Nat. Methods 10(8), 2013
PMID: 23832150
Ecology: Birds sing at a higher pitch in urban noise.
Slabbekoorn H, Peet M., Nature 424(6946), 2003
PMID: 12867967
Direct stochastic optical reconstruction microscopy with standard fluorescent probes.
van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M., Nat Protoc 6(7), 2011
PMID: 21720313
Highly inclined thin illumination enables clear single-molecule imaging in cells.
Tokunaga M, Imamoto N, Sakata-Sogawa K., Nat. Methods 5(2), 2008
PMID: 18176568
Fast, single-molecule localization that achieves theoretically minimum uncertainty.
Smith CS, Joseph N, Rieger B, Lidke KA., Nat. Methods 7(5), 2010
PMID: 20364146
Precise nanometer localization analysis for individual fluorescent probes.
Thompson RE, Larson DR, Webb WW., Biophys. J. 82(5), 2002
PMID: 11964263
A guide to super-resolution fluorescence microscopy.
Schermelleh L, Heintzmann R, Leonhardt H., J. Cell Biol. 190(2), 2010
PMID: 20643879
Photonic force microscope calibration by thermal noise analysis
AUTHOR UNKNOWN, 1988
Deconvolution microscopy
AUTHOR UNKNOWN, 2005
Optical trapping and binding
AUTHOR UNKNOWN, 2013
Characterization of photodamage to Escherichia coli in optical traps.
Neuman KC, Chadd EH, Liou GF, Bergman K, Block SM., Biophys. J. 77(5), 1999
PMID: 10545383
Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions.
Hadizadeh Yazdi N, Guet CC, Johnson RC, Marko JF., Mol. Microbiol. 86(6), 2012
PMID: 23078205
Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells.
Fisher JK, Bourniquel A, Witz G, Weiner B, Prentiss M, Kleckner N., Cell 153(4), 2013
PMID: 23623305
Structural and physical aspects of bacterial chromosome segregation.
Woldringh CL, Nanninga N., J. Struct. Biol. 156(2), 2006
PMID: 16828313
Physical manipulation of the Escherichia coli chromosome reveals its soft nature.
Pelletier J, Halvorsen K, Ha BY, Paparcone R, Sandler SJ, Woldringh CL, Wong WP, Jun S., Proc. Natl. Acad. Sci. U.S.A. 109(40), 2012
PMID: 22984156
Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.
Huang B, Wang W, Bates M, Zhuang X., Science 319(5864), 2008
PMID: 18174397
Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function.
Pavani SR, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE., Proc. Natl. Acad. Sci. U.S.A. 106(9), 2009
PMID: 19211795
Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change.
Persson M, Engstrom D, Frank A, Backsten J, Bengtsson J, Goksor M., Opt Express 18(11), 2010
PMID: 20588985
Real-time generation of fully optimized holograms for optical trapping applications
AUTHOR UNKNOWN, 2011
Real-time computation of subdiffraction-resolution fluorescence images.
Wolter S, Schuttpelz M, Tscherepanow M, VAN DE Linde S, Heilemann M, Sauer M., J Microsc 237(1), 2010
PMID: 20055915
rapidSTORM: accurate, fast open-source software for localization microscopy.
Wolter S, Loschberger A, Holm T, Aufmkolk S, Dabauvalle MC, van de Linde S, Sauer M., Nat. Methods 9(11), 2012
PMID: 23132113
Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772
Imaging fenestrations in liver sinusoidal endothelial cells by optical localization microscopy.
Monkemoller V, Schuttpelz M, McCourt P, Sorensen K, Smedsrod B, Huser T., Phys Chem Chem Phys 16(24), 2014
PMID: 24830784
Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r.
Michelsen O, Teixeira de Mattos MJ, Jensen PR, Hansen FG., Microbiology (Reading, Engl.) 149(Pt 4), 2003
PMID: 12686642
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27958271
PubMed | Europe PMC

Suchen in

Google Scholar