A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants

Gómez Baraibar Á, Reichert D, Mügge C, Seger S, Gröger H, Kourist R (2016)
Angewandte Chemie International Edition 55(47): 14823-14827.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gómez Baraibar, Álvaro; Reichert, Dennis; Mügge, Carolin; Seger, Svenja; Gröger, HaraldUniBi; Kourist, Robert
Abstract / Bemerkung
The combination of enzymes with traditional chemical catalysts unifies the high selectivity of the former with the versatility of the latter. A major challenge of this approach is the difference in the optimal reaction conditions for each catalyst type. In this work, we combined a cofactor-free decarboxylase with a ruthenium metathesis catalyst to produce high-value antioxidants from bio-based precursors. As suitable ruthenium catalysts did not show satisfactory activity under aqueous conditions, the reaction required the use of an organic solvent, which in turn significantly reduced enzyme activity. Upon encapsulation of the decarboxylase in a cryogel, the decarboxylation could be conducted in an organic solvent, and the recovery of the enzyme after the reaction was facilitated. After an intermediate drying step, the subsequent metathesis in pure organic solvent proved to be straightforward. The synthetic utility of the cascade was demonstrated by the synthesis of the antioxidant 4,4′-dihydroxystilbene in an overall yield of 90 %.
Erscheinungsjahr
2016
Zeitschriftentitel
Angewandte Chemie International Edition
Band
55
Ausgabe
47
Seite(n)
14823-14827
ISSN
1433-7851
Page URI
https://pub.uni-bielefeld.de/record/2906851

Zitieren

Gómez Baraibar Á, Reichert D, Mügge C, Seger S, Gröger H, Kourist R. A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants. Angewandte Chemie International Edition. 2016;55(47):14823-14827.
Gómez Baraibar, Á., Reichert, D., Mügge, C., Seger, S., Gröger, H., & Kourist, R. (2016). A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants. Angewandte Chemie International Edition, 55(47), 14823-14827. doi:10.1002/anie.201607777
Gómez Baraibar, Álvaro, Reichert, Dennis, Mügge, Carolin, Seger, Svenja, Gröger, Harald, and Kourist, Robert. 2016. “A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants”. Angewandte Chemie International Edition 55 (47): 14823-14827.
Gómez Baraibar, Á., Reichert, D., Mügge, C., Seger, S., Gröger, H., and Kourist, R. (2016). A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants. Angewandte Chemie International Edition 55, 14823-14827.
Gómez Baraibar, Á., et al., 2016. A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants. Angewandte Chemie International Edition, 55(47), p 14823-14827.
Á. Gómez Baraibar, et al., “A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants”, Angewandte Chemie International Edition, vol. 55, 2016, pp. 14823-14827.
Gómez Baraibar, Á., Reichert, D., Mügge, C., Seger, S., Gröger, H., Kourist, R.: A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants. Angewandte Chemie International Edition. 55, 14823-14827 (2016).
Gómez Baraibar, Álvaro, Reichert, Dennis, Mügge, Carolin, Seger, Svenja, Gröger, Harald, and Kourist, Robert. “A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants”. Angewandte Chemie International Edition 55.47 (2016): 14823-14827.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Chemoenzymatic Cascade Synthesis of Optically Pure Alkanoic Acids by Using Engineered Arylmalonate Decarboxylase Variants.
Enoki J, Mügge C, Tischler D, Miyamoto K, Kourist R., Chemistry 25(19), 2019
PMID: 30702787
Hot off the press.
Hill RA, Sutherland A., Nat Prod Rep 34(2), 2017
PMID: 28079908
Editorial: Applied Microbiology for Chemical Syntheses.
Kourist R, González-Sabín J, Siebers B, Julsing M., Front Microbiol 8(), 2017
PMID: 29075238

41 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

Simons, Adv. Synth. Catal. 348(), 2006
Highly efficient dynamic kinetic resolution of azlactones by urea-based bifunctional organocatalysts.
Berkessel A, Cleemann F, Mukherjee S, Muller TN, Lex J., Angew. Chem. Int. Ed. Engl. 44(5), 2005
PMID: 15657971

AUTHOR UNKNOWN, Angew. Chem. 117(), 2005

van, Macromolecules 37(), 2004
Cooperative tandem catalysis by an organometallic complex and a metalloenzyme.
Denard CA, Huang H, Bartlett MJ, Lu L, Tan Y, Zhao H, Hartwig JF., Angew. Chem. Int. Ed. Engl. 53(2), 2014
PMID: 24536102

AUTHOR UNKNOWN, Angew. Chem. 126(), 2014

Tenbrink, Adv. Synth. Catal. 353(), 2011

AUTHOR UNKNOWN, 0
A materials approach to site-isolation of Grubbs catalysts from incompatible solvents and m-chloroperoxybenzoic acid.
Mwangi MT, Runge MB, Hoak KM, Schulz MD, Bowden NB., Chemistry 14(22), 2008
PMID: 18563767

AUTHOR UNKNOWN, Angew. Chem. 127(), 2015
De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J., Metab. Eng. 32(), 2015
PMID: 26344106
Resveratrol analogue 4,4'-dihydroxy-trans-stilbene potently inhibits cancer invasion and metastasis.
Savio M, Ferraro D, Maccario C, Vaccarone R, Jensen LD, Corana F, Mannucci B, Bianchi L, Cao Y, Stivala LA., Sci Rep 6(), 2016
PMID: 26829331
4,4'-Dihydroxy-trans-stilbene, a resveratrol analogue, exhibited enhanced antioxidant activity and cytotoxicity.
Fan GJ, Liu XD, Qian YP, Shang YJ, Li XZ, Dai F, Fang JG, Jin XL, Zhou B., Bioorg. Med. Chem. 17(6), 2009
PMID: 19251420

AUTHOR UNKNOWN, 0

Nicolaou, Liebigs Ann. (), 1997
A new method for the reductive coupling of carbonyls to olefins. Synthesis of beta-carotene.
Mc Murry JE, Fleming MP., J. Am. Chem. Soc. 96(14), 1974
PMID: 4850242

Grubbs, Tetrahedron 60(), 2004

Barbara, Eur. Polym. J. 62(), 2015

AUTHOR UNKNOWN, 0

Kodaira, Makromol. Chem. Rapid Commun. 1(), 1980

Sovish, J. Org. Chem. 24(), 1959

Ferré-Filmon, Eur. J. Org. Chem. (), 2005

AUTHOR UNKNOWN, 0

Skowerski, Green Chem. 14(), 2012
Chelating ruthenium phenolate complexes: synthesis, general catalytic activity, and applications in olefin metathesis polymerization.
Kozlowska A, Dranka M, Zachara J, Pump E, Slugovc C, Skowerski K, Grela K., Chemistry 20(43), 2014
PMID: 25204738
Mechanism and activity of ruthenium olefin metathesis catalysts.
Sanford MS, Love JA, Grubbs RH., J. Am. Chem. Soc. 123(27), 2001
PMID: 11439041

Skowerski, Tetrahedron 69(), 2013
A highly efficient ruthenium catalyst for metathesis reactions.
Grela K, Harutyunyan S, Michrowska A., Angew. Chem. Int. Ed. Engl. 41(21), 2002
PMID: 12412074

AUTHOR UNKNOWN, Angew. Chem. 114(), 2002

Skowerski, Catal. Sci. Technol. 2(), 2012
2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry.
Pace V, Hoyos P, Castoldi L, Dominguez de Maria P, Alcantara AR., ChemSusChem 5(8), 2012
PMID: 22887922

AUTHOR UNKNOWN, 0

Liu, Tetrahedron Lett. 50(), 2009

AUTHOR UNKNOWN, Angew. Chem. 112(), 2000

Hischer, Biocatal. Biotransform. 24(), 2009
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27754591
PubMed | Europe PMC

Suchen in

Google Scholar