Hydrophobicity-Driven Self-Assembly of an Eighteen-Membered Honeycomb Lattice with Almost Classical Spins

Zhou G-J, Richter J, Schnack J, Zheng Y-Z (2016)
CHEMISTRY-A EUROPEAN JOURNAL 22(42): 14846-14850.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Zhou, Guo-Jun; Richter, Johannes; Schnack, JürgenUniBi ; Zheng, Yan-Zhen
Abstract / Bemerkung
The design and synthesis of model compounds that do not exist naturally is one of the important targets in modern coordination chemistry. Herein, an eighteen-membered honeycomb structure with equal numbers of Mn-II (s = 5/2) and Gd-III (s = 7/2) metal centers has been prepared, for the first time, by using a hydrophobic force-directed self-assembling process. Due to the weakly coupled GdIII pairs, the magnetic properties are mainly determined by eight-membered chains in the experimentally considered temperature range. These [Mn4Gd4] "finite-size" chains, albeit with large Hilbert space, can be fully resolved by the high-temperature series expansion and the powerful finite-temperature Lanczos method, which reveal that the exchange-couplings between the metal centers are antiferromagnetic and consistent with the magnetization measurement. Interestingly, from the surface-engineering point of view, the [Mn4Gd4] chains are "precisely" assembled into a 2D honeycomb pattern, which is potentially desirable in the design of weakly coupled qubits.
Stichworte
classical spins; eighteen-membered lattice; honeycomb lattice; self; assembly; two-dimensional
Erscheinungsjahr
2016
Zeitschriftentitel
CHEMISTRY-A EUROPEAN JOURNAL
Band
22
Ausgabe
42
Seite(n)
14846-14850
ISSN
0947-6539
eISSN
1521-3765
Page URI
https://pub.uni-bielefeld.de/record/2906725

Zitieren

Zhou G-J, Richter J, Schnack J, Zheng Y-Z. Hydrophobicity-Driven Self-Assembly of an Eighteen-Membered Honeycomb Lattice with Almost Classical Spins. CHEMISTRY-A EUROPEAN JOURNAL. 2016;22(42):14846-14850.
Zhou, G. - J., Richter, J., Schnack, J., & Zheng, Y. - Z. (2016). Hydrophobicity-Driven Self-Assembly of an Eighteen-Membered Honeycomb Lattice with Almost Classical Spins. CHEMISTRY-A EUROPEAN JOURNAL, 22(42), 14846-14850. doi:10.1002/chem.201603559
Zhou, G. - J., Richter, J., Schnack, J., and Zheng, Y. - Z. (2016). Hydrophobicity-Driven Self-Assembly of an Eighteen-Membered Honeycomb Lattice with Almost Classical Spins. CHEMISTRY-A EUROPEAN JOURNAL 22, 14846-14850.
Zhou, G.-J., et al., 2016. Hydrophobicity-Driven Self-Assembly of an Eighteen-Membered Honeycomb Lattice with Almost Classical Spins. CHEMISTRY-A EUROPEAN JOURNAL, 22(42), p 14846-14850.
G.-J. Zhou, et al., “Hydrophobicity-Driven Self-Assembly of an Eighteen-Membered Honeycomb Lattice with Almost Classical Spins”, CHEMISTRY-A EUROPEAN JOURNAL, vol. 22, 2016, pp. 14846-14850.
Zhou, G.-J., Richter, J., Schnack, J., Zheng, Y.-Z.: Hydrophobicity-Driven Self-Assembly of an Eighteen-Membered Honeycomb Lattice with Almost Classical Spins. CHEMISTRY-A EUROPEAN JOURNAL. 22, 14846-14850 (2016).
Zhou, Guo-Jun, Richter, Johannes, Schnack, Jürgen, and Zheng, Yan-Zhen. “Hydrophobicity-Driven Self-Assembly of an Eighteen-Membered Honeycomb Lattice with Almost Classical Spins”. CHEMISTRY-A EUROPEAN JOURNAL 22.42 (2016): 14846-14850.

74 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

Richter, Lect. Notes Phys. 645(), 2004

Balamurugan, Phys. Rev. B 90(), 2014

AUTHOR UNKNOWN, 0
Quantum magnets on the honeycomb and triangular lattices at T=0.
Oitmaa J, Hamer CJ, Zheng Weihong., Phys. Rev., B Condens. Matter 45(17), 1992
PMID: 10000872
Topological Mott insulators.
Raghu S, Qi XL, Honerkamp C, Zhang SC., Phys. Rev. Lett. 100(15), 2008
PMID: 18518132
Spin liquids in frustrated magnets.
Balents L., Nature 464(7286), 2010
PMID: 20220838

Bishop, Phys. Rev. B 92(), 2015

AUTHOR UNKNOWN, 0
Spin waves and revised crystal structure of honeycomb iridate Na2IrO3.
Choi SK, Coldea R, Kolmogorov AN, Lancaster T, Mazin II, Blundell SJ, Radaelli PG, Singh Y, Gegenwart P, Choi KR, Cheong SW, Baker PJ, Stock C, Taylor J., Phys. Rev. Lett. 108(12), 2012
PMID: 22540621
Ruthenium(V) oxides from low-temperature hydrothermal synthesis.
Hiley CI, Lees MR, Fisher JM, Thompsett D, Agrestini S, Smith RI, Walton RI., Angew. Chem. Int. Ed. Engl. 53(17), 2014
PMID: 24644102

AUTHOR UNKNOWN, Angew. Chem. 126(), 2014
Synthesis, crystal structure, and magnetic properties of Bi3Mn4O12(NO3) oxynitrate comprising S = 3/2 honeycomb lattice.
Smirnova O, Azuma M, Kumada N, Kusano Y, Matsuda M, Shimakawa Y, Takei T, Yonesaki Y, Kinomura N., J. Am. Chem. Soc. 131(23), 2009
PMID: 19507911

AUTHOR UNKNOWN, 0
Materials science. There's room in the middle.
Cheetham AK, Rao CN., Science 318(5847), 2007
PMID: 17916720

Rao, J. Phys. Condens. Matter(), 0
Magnetic metal-organic frameworks.
Kurmoo M., Chem Soc Rev 38(5), 2009
PMID: 19384442

Zheng, Coord. Chem. Rev. 258-259(), 2014

AUTHOR UNKNOWN, 0

De, Chem. Commun. (), 1996
A self-assembled 2D molecule-based magnet: the honeycomb layered material [Co3Cl4(H2O)2[Co(Hbbiz)3]2].
Galan-Mascaros JR, Dunbar KR., Angew. Chem. Int. Ed. Engl. 42(20), 2003
PMID: 12772165

AUTHOR UNKNOWN, Angew. Chem. 115(), 2003
Solvent-tuned azido-bridged Co2+ layers: square, honeycomb, and Kagome.
Wang XY, Wang L, Wang ZM, Gao S., J. Am. Chem. Soc. 128(3), 2006
PMID: 16417329
Synthetic control to achieve lanthanide(III)/pyrimidine-4,6-dicarboxylate compounds by preventing oxalate formation: structural, magnetic, and luminescent properties.
Cepeda J, Balda R, Beobide G, Castillo O, Fernandez J, Luque A, Perez-Yanez S, Roman P., Inorg Chem 51(14), 2012
PMID: 22726123

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, Angew. Chem. 112(), 2000
Hydrothermal Synthesis, Structure, and Magnetism of
Gutschke SO, Price DJ, Powell AK, Wood PT., Angew. Chem. Int. Ed. Engl. 40(10), 2001
PMID: 11385673

AUTHOR UNKNOWN, Angew. Chem. 113(), 2001
Compounds with the "maple leaf" lattice: synthesis, structure, and magnetism of M(x)[Fe(O2CCH2)2NCH2PO3]6n.H2O.
Cave D, Coomer FC, Molinos E, Klauss HH, Wood PT., Angew. Chem. Int. Ed. Engl. 45(5), 2006
PMID: 16370014

AUTHOR UNKNOWN, Angew. Chem. 118(), 2006
An ionothermally prepared S = 1/2 vanadium oxyfluoride kagome lattice.
Aidoudi FH, Aldous DW, Goff RJ, Slawin AM, Attfield JP, Morris RE, Lightfoot P., Nat Chem 3(10), 2011
PMID: 21941253
Extending the Family of V(4+) S=(1/2) Kagome Antiferromagnets.
Clark L, Aidoudi FH, Black C, Arachchige KS, Slawin AM, Morris RE, Lightfoot P., Angew. Chem. Int. Ed. Engl. 54(51), 2015
PMID: 26515792

AUTHOR UNKNOWN, Angew. Chem. 127(), 2015
A structurally perfect S = 1/2 metal-organic hybrid kagome antiferromagnet.
Nytko EA, Helton JS, Muller P, Nocera DG., J. Am. Chem. Soc. 130(10), 2008
PMID: 18275194

Tanaka, Chem. Mater. 20(), 2008

AUTHOR UNKNOWN, 0

Benelli, Angew. Chem. Int. Ed. Engl. 35(), 1996

AUTHOR UNKNOWN, Angew. Chem. 108(), 1996

AUTHOR UNKNOWN, Angew. Chem. 114(), 2002
Ferrous wheels, ellipse [(tBu3SiS)FeX]n, and cube [(tBu3SiS)Fe(CCSitBu3)]4.
Sydora OL, Wolczanski PT, Lobkovsky EB., Angew. Chem. Int. Ed. Engl. 42(23), 2003
PMID: 12813754

AUTHOR UNKNOWN, Angew. Chem. 115(), 2003
An FeIII wheel with a zwitterionic ligand: the structure and magnetic properties of [Fe(OMe)2(proline)]12[ClO4]12.
Abu-Nawwas AA, Cano J, Christian P, Mallah T, Rajaraman G, Teat SJ, Winpenny RE, Yukawa Y., Chem. Commun. (Camb.) (3), 2004
PMID: 14740054

AUTHOR UNKNOWN, 0

Watton, Angew. Chem. Int. Ed. Engl. 36(), 1997

AUTHOR UNKNOWN, Angew. Chem. 109(), 1997
Octametallic and hexadecametallic ferric wheels.
Jones LF, Batsanov A, Brechin EK, Collison D, Helliwell M, Mallah T, McInnes EJ, Piligkos S., Angew. Chem. Int. Ed. Engl. 41(22), 2002
PMID: 12434375

AUTHOR UNKNOWN, Angew. Chem. 114(), 2002
Heterometallic Rings: Their Physics and use as Supramolecular Building Blocks.
McInnes EJ, Timco GA, Whitehead GF, Winpenny RE., Angew. Chem. Int. Ed. Engl. 54(48), 2015
PMID: 26459810

AUTHOR UNKNOWN, Angew. Chem. 127(), 2015

Lohmann, Phys. Rev. B 89(), 2014

AUTHOR UNKNOWN, 0

Borras-Almenar, J. Comput. Chem. 22(), 2001

Tsukerblat, Inorg. Chim. Acta 361(), 2008

Schnalle, Int. Rev. Phys. Chem. 29(), 2010

AUTHOR UNKNOWN, 0
Lanczos method for the calculation of finite-temperature quantities in correlated systems.
Jaklic J, Prelovsek P., Phys. Rev., B Condens. Matter 49(7), 1994
PMID: 10011449

Schnack, Eur. Phys. J. B 78(), 2010

Hanebaum, Phys. Rev. B 92(), 2015

Lieb, J. Math. Phys. 3(), 1962

Pineda, Chem. Sci. 7(), 2016

AUTHOR UNKNOWN, 0

Schmidt, J. Magn. Magn. Mater. 295(), 2005

Furrer, Rev. Mod. Phys. 85(), 2013

Haldane, Phys. Lett. A 93(), 1983
Proof of the Peierls instability in one dimension.
Kennedy T, Lieb EH., Phys. Rev. Lett. 59(12), 1987
PMID: 10035199
Imaging of spin waves in atomically designed nanomagnets.
Spinelli A, Bryant B, Delgado F, Fernandez-Rossier J, Otte AF., Nat Mater 13(8), 2014
PMID: 24997736

Khajetoorians, Nat. Phys. 8(), 2012
Bistability in atomic-scale antiferromagnets.
Loth S, Baumann S, Lutz CP, Eigler DM, Heinrich AJ., Science 335(6065), 2012
PMID: 22246771
Direct observation of finite size effects in chains of antiferromagnetically coupled spins.
Guidi T, Gillon B, Mason SA, Garlatti E, Carretta S, Santini P, Stunault A, Caciuffo R, van Slageren J, Klemke B, Cousson A, Timco GA, Winpenny RE., Nat Commun 6(), 2015
PMID: 25952539

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27481541
PubMed | Europe PMC

Suchen in

Google Scholar