Application of classical simulations for the computation of vibrational properties of free molecules
Tikhonov DS, Sharapa DI, Schwabedissen J, Rybkin VV (2016)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 18(40): 28325-28338.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tikhonov, Denis S.;
Sharapa, Dmitry I.;
Schwabedissen, JanUniBi;
Rybkin, Vladimir V.
Abstract / Bemerkung
In this study, we investigate the ability of classical molecular dynamics (MD) and Monte-Carlo (MC) simulations for modeling the intramolecular vibrational motion. These simulations were used to compute thermally-averaged geometrical structures and infrared vibrational intensities for a benchmark set previously studied by gas electron diffraction (GED): CS2, benzene, chloromethylthiocyanate, pyrazinamide and 9,12-I-2-1,2 closo-C2B10H10. The MD sampling of NVT ensembles was performed using chains of Nose-Hoover thermostats (NH) as well as the generalized Langevin equation thermostat (GLE). The performance of the theoretical models based on the classical MD and MC simulations was compared with the experimental data and also with the alternative computational techniques: a conventional approach based on the Taylor expansion of potential energy surface, path-integral MD and MD with quantum-thermal bath (QTB) based on the generalized Langevin equation (GLE). A straightforward application of the classical simulations resulted, as expected, in poor accuracy of the calculated observables due to the complete neglect of quantum effects. However, the introduction of a posteriori quantum corrections significantly improved the situation. The application of these corrections for MD simulations of the systems with large-amplitude motions was demonstrated for chloromethylthiocyanate. The comparison of the theoretical vibrational spectra has revealed that the GLE thermostat used in this work is not applicable for this purpose. On the other hand, the NH chains yielded reasonably good results.
Erscheinungsjahr
2016
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
18
Ausgabe
40
Seite(n)
28325-28338
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2906716
Zitieren
Tikhonov DS, Sharapa DI, Schwabedissen J, Rybkin VV. Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2016;18(40):28325-28338.
Tikhonov, D. S., Sharapa, D. I., Schwabedissen, J., & Rybkin, V. V. (2016). Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 18(40), 28325-28338. doi:10.1039/c6cp05849c
Tikhonov, Denis S., Sharapa, Dmitry I., Schwabedissen, Jan, and Rybkin, Vladimir V. 2016. “Application of classical simulations for the computation of vibrational properties of free molecules”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 18 (40): 28325-28338.
Tikhonov, D. S., Sharapa, D. I., Schwabedissen, J., and Rybkin, V. V. (2016). Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 18, 28325-28338.
Tikhonov, D.S., et al., 2016. Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 18(40), p 28325-28338.
D.S. Tikhonov, et al., “Application of classical simulations for the computation of vibrational properties of free molecules”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 18, 2016, pp. 28325-28338.
Tikhonov, D.S., Sharapa, D.I., Schwabedissen, J., Rybkin, V.V.: Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 18, 28325-28338 (2016).
Tikhonov, Denis S., Sharapa, Dmitry I., Schwabedissen, Jan, and Rybkin, Vladimir V. “Application of classical simulations for the computation of vibrational properties of free molecules”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 18.40 (2016): 28325-28338.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions.
Otlyotov AA, Lamm JH, Blomeyer S, Mitzel NW, Rybkin VV, Zhabanov YA, Tverdova NV, Giricheva NI, Girichev GV., Phys Chem Chem Phys 19(20), 2017
PMID: 28485433
Otlyotov AA, Lamm JH, Blomeyer S, Mitzel NW, Rybkin VV, Zhabanov YA, Tverdova NV, Giricheva NI, Girichev GV., Phys Chem Chem Phys 19(20), 2017
PMID: 28485433
118 References
Daten bereitgestellt von Europe PubMed Central.
Pauling, J. Chem. Phys. 2(), 1934
Brockway, Rev. Mod. Phys. 8(), 1936
Stosick, J. Am. Chem. Soc. 61(), 1939
Herzberg, 1945
Pauling, 1960
Gillespie, 2012
Hargittai, 2006
Dewar, J. Am. Chem. Soc. 99(), 1977
Dewar, J. Am. Chem. Soc. 99(), 1977
Dewar, J. Am. Chem. Soc. 107(), 1985
MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids.
Yu HS, He X, Truhlar DG., J Chem Theory Comput 12(3), 2016
PMID: 26722866
Yu HS, He X, Truhlar DG., J Chem Theory Comput 12(3), 2016
PMID: 26722866
Hargittai, 1988
Drago, 1992
Yagola, 1999
Kochikov, J. Mol. Struct. 445(), 1998
Morino, Bull. Chem. Soc. Jpn. 35(), 1962
Domenicano, Struct. Chem. 1(), 1990
Dorofeeva, Struct. Chem. 18(), 2007
Tarasov, J. Struct. Chem. 45(), 2004
Vogt, J. Mol. Struct. 1050(), 2013
Khaikin, Struct. Chem. 26(), 2015
The structure of chloromethyl thiocyanate, CH2ClSCN, in gas and crystalline phases.
Berrueta Martinez Y, Rodriguez Pirani LS, Erben MF, Reuter CG, Vishnevskiy YV, Stammler HG, Mitzel NW, Della Vedova CO., Phys Chem Chem Phys 17(24), 2015
PMID: 26017187
Berrueta Martinez Y, Rodriguez Pirani LS, Erben MF, Reuter CG, Vishnevskiy YV, Stammler HG, Mitzel NW, Della Vedova CO., Phys Chem Chem Phys 17(24), 2015
PMID: 26017187
Influence of Antipodally Coupled Iodine and Carbon Atoms on the Cage Structure of 9,12-I2-closo-1,2-C2B10H10: An Electron Diffraction and Computational Study.
Vishnevskiy YV, Tikhonov DS, Reuter CG, Mitzel NW, Hnyk D, Holub J, Wann DA, Lane PD, Berger RJ, Hayes SA., Inorg Chem 54(24), 2015
PMID: 26625008
Vishnevskiy YV, Tikhonov DS, Reuter CG, Mitzel NW, Hnyk D, Holub J, Wann DA, Lane PD, Berger RJ, Hayes SA., Inorg Chem 54(24), 2015
PMID: 26625008
Tikhonov, J. Mol. Struct. (), 2016
Spiridonov, Russ. Chem. Rev. 47(), 1978
Vogt, J. Mol. Struct. 570(), 2001
Pawłowski, J. Chem. Phys. 116(), 2002
Interaction of the beryllium cation with molecular hydrogen and deuterium.
Artiukhin DG, Klos J, Bieske EJ, Buchachenko AA., J Phys Chem A 118(33), 2014
PMID: 24978305
Artiukhin DG, Klos J, Bieske EJ, Buchachenko AA., J Phys Chem A 118(33), 2014
PMID: 24978305
Rotational study of the NH3-CO complex: millimeter-wave measurements and ab initio calculations.
Surin LA, Potapov A, Dolgov AA, Tarabukin IV, Panfilov VA, Schlemmer S, Kalugina YN, Faure A, van der Avoird A., J Chem Phys 142(11), 2015
PMID: 25796250
Surin LA, Potapov A, Dolgov AA, Tarabukin IV, Panfilov VA, Schlemmer S, Kalugina YN, Faure A, van der Avoird A., J Chem Phys 142(11), 2015
PMID: 25796250
Rotational study of the CH4-CO complex: Millimeter-wave measurements and ab initio calculations.
Surin LA, Tarabukin IV, Panfilov VA, Schlemmer S, Kalugina YN, Faure A, Rist C, van der Avoird A., J Chem Phys 143(15), 2015
PMID: 26493903
Surin LA, Tarabukin IV, Panfilov VA, Schlemmer S, Kalugina YN, Faure A, Rist C, van der Avoird A., J Chem Phys 143(15), 2015
PMID: 26493903
Bright, 1980
Atkins, 2006
Bunker, 2016
Kochikov, J. Mol. Struct. 607(), 2002
Extending the molecular size in accurate quantum-chemical calculations: the equilibrium structure and spectroscopic properties of uracil.
Puzzarini C, Barone V., Phys Chem Chem Phys 13(15), 2011
PMID: 21409277
Puzzarini C, Barone V., Phys Chem Chem Phys 13(15), 2011
PMID: 21409277
Nonempirical anharmonic vibrational perturbation theory applied to biomolecules: free-base porphin.
Krasnoshchekov SV, Stepanov NF., J Phys Chem A 119(9), 2014
PMID: 25360995
Krasnoshchekov SV, Stepanov NF., J Phys Chem A 119(9), 2014
PMID: 25360995
Ab Initio Anharmonic Analysis of Vibrational Spectra of Uracil Using the Numerical-Analytic Implementation of Operator Van Vleck Perturbation Theory.
Krasnoshchekov SV, Vogt N, Stepanov NF., J Phys Chem A 119(25), 2015
PMID: 26020099
Krasnoshchekov SV, Vogt N, Stepanov NF., J Phys Chem A 119(25), 2015
PMID: 26020099
Anharmonic vibrational properties by a fully automated second-order perturbative approach.
Barone V., J Chem Phys 122(1), 2005
PMID: 15638643
Barone V., J Chem Phys 122(1), 2005
PMID: 15638643
Jensen, 1999
Young, 2001
Schlick, 2010
Vishnevskiy, Theor. Chem. Acc. 135(), 2016
Zhabanov, J. Porphyrins Phthalocyanines 17(), 2013
Pimenov, Struct. Chem. 26(), 2015
Zhabanov, J. Mol. Struct. 1092(), 2015
Ab initio molecular dynamics with density functional theory.
Tse JS., Annu Rev Phys Chem 53(), 2001
PMID: 11972009
Tse JS., Annu Rev Phys Chem 53(), 2001
PMID: 11972009
Bosma, J. Chem. Phys. 98(), 1993
Iuchi, J. Phys. Chem. B 106(), 2002
Molecular dynamics integration and molecular vibrational theory. III. The infrared spectrum of water.
Praprotnik M, Janezic D., J Chem Phys 122(17), 2005
PMID: 15910019
Praprotnik M, Janezic D., J Chem Phys 122(17), 2005
PMID: 15910019
Theoretical spectroscopy using molecular dynamics: theory and application to CH5(+) and its isotopologues.
Ivanov SD, Witt A, Marx D., Phys Chem Chem Phys 15(25), 2013
PMID: 23666315
Ivanov SD, Witt A, Marx D., Phys Chem Chem Phys 15(25), 2013
PMID: 23666315
Quantum corrections to classical time-correlation functions: hydrogen bonding and anharmonic floppy modes.
Ramirez R, Lopez-Ciudad T, Kumar P P, Marx D., J Chem Phys 121(9), 2004
PMID: 15332943
Ramirez R, Lopez-Ciudad T, Kumar P P, Marx D., J Chem Phys 121(9), 2004
PMID: 15332943
Experimental equilibrium structures: application of molecular dynamics simulations to vibrational corrections for gas electron diffraction.
Wann DA, Zakharov AV, Reilly AM, McCaffrey PD, Rankin DW., J Phys Chem A 113(34), 2009
PMID: 19645487
Wann DA, Zakharov AV, Reilly AM, McCaffrey PD, Rankin DW., J Phys Chem A 113(34), 2009
PMID: 19645487
Kuchitsu, Bull. Chem. Soc. Jpn. 40(), 1967
The effect of molecular dynamics sampling on the calculated observable gas-phase structures.
Tikhonov DS, Otlyotov AA, Rybkin VV., Phys Chem Chem Phys 18(27), 2016
PMID: 27331660
Tikhonov DS, Otlyotov AA, Rybkin VV., Phys Chem Chem Phys 18(27), 2016
PMID: 27331660
Turney, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2(), 2012
Stanton, 0
Gundersen, J. Mol. Struct. 832(), 2007
Crawford, 2007
Møller, Phys. Rev. 46(), 1934
Orbital-optimized density cumulant functional theory.
Sokolov AY, Schaefer HF 3rd., J Chem Phys 139(20), 2013
PMID: 24289347
Sokolov AY, Schaefer HF 3rd., J Chem Phys 139(20), 2013
PMID: 24289347
Adamo, J. Chem. Phys. 110(), 1999
Becke, J. Chem. Phys. 98(), 1993
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.
Lee C, Yang W, Parr RG., Phys. Rev., B Condens. Matter 37(2), 1988
PMID: 9944570
Lee C, Yang W, Parr RG., Phys. Rev., B Condens. Matter 37(2), 1988
PMID: 9944570
Vosko, Can. J. Phys. 58(), 1980
Density-functional exchange-energy approximation with correct asymptotic behavior.
Becke AD., Phys Rev A Gen Phys 38(6), 1988
PMID: 9900728
Becke AD., Phys Rev A Gen Phys 38(6), 1988
PMID: 9900728
Density-functional approximation for the correlation energy of the inhomogeneous electron gas.
Perdew JP., Phys. Rev., B Condens. Matter 33(12), 1986
PMID: 9938299
Perdew JP., Phys. Rev., B Condens. Matter 33(12), 1986
PMID: 9938299
Perdew, Phys. Rev. B: Condens. Matter Mater. Phys. 23(), 1981
Dunning, J. Chem. Phys. 90(), 1989
Woon, J. Chem. Phys. 103(), 1995
Peterson, J. Chem. Phys. 117(), 2002
Martin, J. Chem. Phys. 114(), 2001
Basis set exchange: a community database for computational sciences.
Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL., J Chem Inf Model 47(3), 2007
PMID: 17428029
Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL., J Chem Inf Model 47(3), 2007
PMID: 17428029
Feller, J. Comput. Chem. 17(), 1996
Vishnevskiy, J. Phys.: Conf. Ser. 633(), 2015
Sipachev, J. Mol. Struct.: THEOCHEM 121(), 1985
Sipachev, Struct. Chem. 11(), 2000
Sipachev, J. Mol. Struct. 567–568(), 2001
Sipachev, Adv. Phys. Chem. 2011(), 2011
Nosé, J. Chem. Phys. 81(), 1984
Canonical dynamics: Equilibrium phase-space distributions.
Hoover WG., Phys Rev A Gen Phys 31(3), 1985
PMID: 9895674
Hoover WG., Phys Rev A Gen Phys 31(3), 1985
PMID: 9895674
Martyna, J. Chem. Phys. 97(), 1992
Langevin equation with colored noise for constant-temperature molecular dynamics simulations.
Ceriotti M, Bussi G, Parrinello M., Phys. Rev. Lett. 102(2), 2009
PMID: 19257259
Ceriotti M, Bussi G, Parrinello M., Phys. Rev. Lett. 102(2), 2009
PMID: 19257259
Metropolis, J. Chem. Phys. 21(), 1953
Nuclear quantum effects in solids using a colored-noise thermostat.
Ceriotti M, Bussi G, Parrinello M., Phys. Rev. Lett. 103(3), 2009
PMID: 19659261
Ceriotti M, Bussi G, Parrinello M., Phys. Rev. Lett. 103(3), 2009
PMID: 19659261
Ceriotti, J. Chem. Theory Comput. 6(), 2010
Schmidt, J. Comput. Chem. 14(), 1993
AUTHOR UNKNOWN, 0
VandeVondele, Comput. Phys. Commun. 167(), 2005
Hutter, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4(), 2014
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases.
VandeVondele J, Hutter J., J Chem Phys 127(11), 2007
PMID: 17887826
VandeVondele J, Hutter J., J Chem Phys 127(11), 2007
PMID: 17887826
Ab initio vibrational state calculations with a quartic force field: applications to H2CO, C2H4, CH3OH, CH3CCH, and C6H6.
Yagi K, Hirao K, Taketsugu T, Schmidt MW, Gordon MS., J Chem Phys 121(3), 2004
PMID: 15260682
Yagi K, Hirao K, Taketsugu T, Schmidt MW, Gordon MS., J Chem Phys 121(3), 2004
PMID: 15260682
Separable dual-space Gaussian pseudopotentials.
Goedecker S, Teter M, Hutter J., Phys. Rev., B Condens. Matter 54(3), 1996
PMID: 9986014
Goedecker S, Teter M, Hutter J., Phys. Rev., B Condens. Matter 54(3), 1996
PMID: 9986014
Lippert, Mol. Phys. 92(), 1997
Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules.
Kolafa J., J Comput Chem 25(3), 2004
PMID: 14696069
Kolafa J., J Comput Chem 25(3), 2004
PMID: 14696069
Simple posterior frequency correction for vibrational spectra from molecular dynamics.
Tikhonov DS., J Chem Phys 144(17), 2016
PMID: 27155626
Tikhonov DS., J Chem Phys 144(17), 2016
PMID: 27155626
Simulations of vibrational spectra from classical trajectories: calibration with ab initio force fields.
Hornicek J, Kapralova P, Bour P., J Chem Phys 127(8), 2007
PMID: 17764264
Hornicek J, Kapralova P, Bour P., J Chem Phys 127(8), 2007
PMID: 17764264
Gabedit--a graphical user interface for computational chemistry softwares.
Allouche AR., J Comput Chem 32(1), 2011
PMID: 20607691
Allouche AR., J Comput Chem 32(1), 2011
PMID: 20607691
Berger, Z. Naturforsch., B: J. Chem. Sci. 64b(), 2009
Reuter, Z. Naturforsch., B: J. Chem. Sci. 71(), 2016
Vishnevskiy, J. Mol. Struct. 833(), 2007
Vishnevskiy, J. Mol. Struct. 871(), 2007
Halkier, Chem. Phys. Lett. 274(), 1997
Paizs, J. Comput. Chem. 22(), 2001
Landau, 1999
Bastiansen, Acta Crystallogr. 13(), 1960
Morino, Acta Crystallogr. 13(), 1960
Morino, J. Chem. Phys. 36(), 1962
Hoy, Mol. Phys. 24(), 1972
Harvey, J. Comput. Chem. 19(), 1998
Nonergodicity of the Nose-Hoover chain thermostat in computationally achievable time.
Patra PK, Bhattacharya B., Phys Rev E Stat Nonlin Soft Matter Phys 90(4), 2014
PMID: 25375620
Patra PK, Bhattacharya B., Phys Rev E Stat Nonlin Soft Matter Phys 90(4), 2014
PMID: 25375620
Pulay, J. Am. Chem. Soc. 105(), 1983
Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study.
Fischer SA, Ueltschi TW, El-Khoury PZ, Mifflin AL, Hess WP, Wang HF, Cramer CJ, Govind N., J Phys Chem B 120(8), 2015
PMID: 26222601
Fischer SA, Ueltschi TW, El-Khoury PZ, Mifflin AL, Hess WP, Wang HF, Cramer CJ, Govind N., J Phys Chem B 120(8), 2015
PMID: 26222601
Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures.
Agarwal V, Huber GW, Conner WC Jr, Auerbach SM., J Chem Phys 135(13), 2011
PMID: 21992323
Agarwal V, Huber GW, Conner WC Jr, Auerbach SM., J Chem Phys 135(13), 2011
PMID: 21992323
AUTHOR UNKNOWN, 0
Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations.
Dracinsky M, Bour P, Hodgkinson P., J Chem Theory Comput 12(3), 2016
PMID: 26857802
Dracinsky M, Bour P, Hodgkinson P., J Chem Theory Comput 12(3), 2016
PMID: 26857802
Liu, Nature 381(), 1996
Foulkes, Rev. Mod. Phys. 73(), 2001
Voevodin, Open Syst. J. (), 2012
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 27722605
PubMed | Europe PMC
Suchen in