Application of classical simulations for the computation of vibrational properties of free molecules

Tikhonov DS, Sharapa DI, Schwabedissen J, Rybkin VV (2016)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 18(40): 28325-28338.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tikhonov, Denis S.; Sharapa, Dmitry I.; Schwabedissen, JanUniBi; Rybkin, Vladimir V.
Abstract / Bemerkung
In this study, we investigate the ability of classical molecular dynamics (MD) and Monte-Carlo (MC) simulations for modeling the intramolecular vibrational motion. These simulations were used to compute thermally-averaged geometrical structures and infrared vibrational intensities for a benchmark set previously studied by gas electron diffraction (GED): CS2, benzene, chloromethylthiocyanate, pyrazinamide and 9,12-I-2-1,2 closo-C2B10H10. The MD sampling of NVT ensembles was performed using chains of Nose-Hoover thermostats (NH) as well as the generalized Langevin equation thermostat (GLE). The performance of the theoretical models based on the classical MD and MC simulations was compared with the experimental data and also with the alternative computational techniques: a conventional approach based on the Taylor expansion of potential energy surface, path-integral MD and MD with quantum-thermal bath (QTB) based on the generalized Langevin equation (GLE). A straightforward application of the classical simulations resulted, as expected, in poor accuracy of the calculated observables due to the complete neglect of quantum effects. However, the introduction of a posteriori quantum corrections significantly improved the situation. The application of these corrections for MD simulations of the systems with large-amplitude motions was demonstrated for chloromethylthiocyanate. The comparison of the theoretical vibrational spectra has revealed that the GLE thermostat used in this work is not applicable for this purpose. On the other hand, the NH chains yielded reasonably good results.
Erscheinungsjahr
2016
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
18
Ausgabe
40
Seite(n)
28325-28338
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2906716

Zitieren

Tikhonov DS, Sharapa DI, Schwabedissen J, Rybkin VV. Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2016;18(40):28325-28338.
Tikhonov, D. S., Sharapa, D. I., Schwabedissen, J., & Rybkin, V. V. (2016). Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 18(40), 28325-28338. doi:10.1039/c6cp05849c
Tikhonov, Denis S., Sharapa, Dmitry I., Schwabedissen, Jan, and Rybkin, Vladimir V. 2016. “Application of classical simulations for the computation of vibrational properties of free molecules”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 18 (40): 28325-28338.
Tikhonov, D. S., Sharapa, D. I., Schwabedissen, J., and Rybkin, V. V. (2016). Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 18, 28325-28338.
Tikhonov, D.S., et al., 2016. Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 18(40), p 28325-28338.
D.S. Tikhonov, et al., “Application of classical simulations for the computation of vibrational properties of free molecules”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 18, 2016, pp. 28325-28338.
Tikhonov, D.S., Sharapa, D.I., Schwabedissen, J., Rybkin, V.V.: Application of classical simulations for the computation of vibrational properties of free molecules. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 18, 28325-28338 (2016).
Tikhonov, Denis S., Sharapa, Dmitry I., Schwabedissen, Jan, and Rybkin, Vladimir V. “Application of classical simulations for the computation of vibrational properties of free molecules”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 18.40 (2016): 28325-28338.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions.
Otlyotov AA, Lamm JH, Blomeyer S, Mitzel NW, Rybkin VV, Zhabanov YA, Tverdova NV, Giricheva NI, Girichev GV., Phys Chem Chem Phys 19(20), 2017
PMID: 28485433

118 References

Daten bereitgestellt von Europe PubMed Central.


Pauling, J. Chem. Phys. 2(), 1934

Brockway, Rev. Mod. Phys. 8(), 1936

Stosick, J. Am. Chem. Soc. 61(), 1939

Herzberg, 1945

Pauling, 1960

Gillespie, 2012

Hargittai, 2006

Dewar, J. Am. Chem. Soc. 99(), 1977

Dewar, J. Am. Chem. Soc. 99(), 1977

Dewar, J. Am. Chem. Soc. 107(), 1985

Hargittai, 1988

Drago, 1992

Yagola, 1999

Kochikov, J. Mol. Struct. 445(), 1998

Morino, Bull. Chem. Soc. Jpn. 35(), 1962

Domenicano, Struct. Chem. 1(), 1990

Dorofeeva, Struct. Chem. 18(), 2007

Tarasov, J. Struct. Chem. 45(), 2004

Vogt, J. Mol. Struct. 1050(), 2013

Khaikin, Struct. Chem. 26(), 2015
The structure of chloromethyl thiocyanate, CH2ClSCN, in gas and crystalline phases.
Berrueta Martinez Y, Rodriguez Pirani LS, Erben MF, Reuter CG, Vishnevskiy YV, Stammler HG, Mitzel NW, Della Vedova CO., Phys Chem Chem Phys 17(24), 2015
PMID: 26017187
Influence of Antipodally Coupled Iodine and Carbon Atoms on the Cage Structure of 9,12-I2-closo-1,2-C2B10H10: An Electron Diffraction and Computational Study.
Vishnevskiy YV, Tikhonov DS, Reuter CG, Mitzel NW, Hnyk D, Holub J, Wann DA, Lane PD, Berger RJ, Hayes SA., Inorg Chem 54(24), 2015
PMID: 26625008

Tikhonov, J. Mol. Struct. (), 2016

Spiridonov, Russ. Chem. Rev. 47(), 1978

Vogt, J. Mol. Struct. 570(), 2001

Pawłowski, J. Chem. Phys. 116(), 2002
Interaction of the beryllium cation with molecular hydrogen and deuterium.
Artiukhin DG, Klos J, Bieske EJ, Buchachenko AA., J Phys Chem A 118(33), 2014
PMID: 24978305
Rotational study of the NH3-CO complex: millimeter-wave measurements and ab initio calculations.
Surin LA, Potapov A, Dolgov AA, Tarabukin IV, Panfilov VA, Schlemmer S, Kalugina YN, Faure A, van der Avoird A., J Chem Phys 142(11), 2015
PMID: 25796250
Rotational study of the CH4-CO complex: Millimeter-wave measurements and ab initio calculations.
Surin LA, Tarabukin IV, Panfilov VA, Schlemmer S, Kalugina YN, Faure A, Rist C, van der Avoird A., J Chem Phys 143(15), 2015
PMID: 26493903

Bright, 1980

Atkins, 2006

Bunker, 2016

Kochikov, J. Mol. Struct. 607(), 2002

Jensen, 1999

Young, 2001

Schlick, 2010

Vishnevskiy, Theor. Chem. Acc. 135(), 2016

Zhabanov, J. Porphyrins Phthalocyanines 17(), 2013

Pimenov, Struct. Chem. 26(), 2015

Zhabanov, J. Mol. Struct. 1092(), 2015
Ab initio molecular dynamics with density functional theory.
Tse JS., Annu Rev Phys Chem 53(), 2001
PMID: 11972009

Bosma, J. Chem. Phys. 98(), 1993

Iuchi, J. Phys. Chem. B 106(), 2002
Quantum corrections to classical time-correlation functions: hydrogen bonding and anharmonic floppy modes.
Ramirez R, Lopez-Ciudad T, Kumar P P, Marx D., J Chem Phys 121(9), 2004
PMID: 15332943

Kuchitsu, Bull. Chem. Soc. Jpn. 40(), 1967
The effect of molecular dynamics sampling on the calculated observable gas-phase structures.
Tikhonov DS, Otlyotov AA, Rybkin VV., Phys Chem Chem Phys 18(27), 2016
PMID: 27331660

Turney, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2(), 2012

Stanton, 0

Gundersen, J. Mol. Struct. 832(), 2007

Crawford, 2007

Møller, Phys. Rev. 46(), 1934
Orbital-optimized density cumulant functional theory.
Sokolov AY, Schaefer HF 3rd., J Chem Phys 139(20), 2013
PMID: 24289347

Adamo, J. Chem. Phys. 110(), 1999

Becke, J. Chem. Phys. 98(), 1993
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.
Lee C, Yang W, Parr RG., Phys. Rev., B Condens. Matter 37(2), 1988
PMID: 9944570

Vosko, Can. J. Phys. 58(), 1980

Perdew, Phys. Rev. B: Condens. Matter Mater. Phys. 23(), 1981

Dunning, J. Chem. Phys. 90(), 1989

Woon, J. Chem. Phys. 103(), 1995

Peterson, J. Chem. Phys. 117(), 2002

Martin, J. Chem. Phys. 114(), 2001
Basis set exchange: a community database for computational sciences.
Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL., J Chem Inf Model 47(3), 2007
PMID: 17428029

Feller, J. Comput. Chem. 17(), 1996

Vishnevskiy, J. Phys.: Conf. Ser. 633(), 2015

Sipachev, J. Mol. Struct.: THEOCHEM 121(), 1985

Sipachev, Struct. Chem. 11(), 2000

Sipachev, J. Mol. Struct. 567–568(), 2001

Sipachev, Adv. Phys. Chem. 2011(), 2011

Nosé, J. Chem. Phys. 81(), 1984
Canonical dynamics: Equilibrium phase-space distributions.
Hoover WG., Phys Rev A Gen Phys 31(3), 1985
PMID: 9895674

Martyna, J. Chem. Phys. 97(), 1992
Langevin equation with colored noise for constant-temperature molecular dynamics simulations.
Ceriotti M, Bussi G, Parrinello M., Phys. Rev. Lett. 102(2), 2009
PMID: 19257259

Metropolis, J. Chem. Phys. 21(), 1953
Nuclear quantum effects in solids using a colored-noise thermostat.
Ceriotti M, Bussi G, Parrinello M., Phys. Rev. Lett. 103(3), 2009
PMID: 19659261

Ceriotti, J. Chem. Theory Comput. 6(), 2010

Schmidt, J. Comput. Chem. 14(), 1993

AUTHOR UNKNOWN, 0

VandeVondele, Comput. Phys. Commun. 167(), 2005

Hutter, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4(), 2014
Ab initio vibrational state calculations with a quartic force field: applications to H2CO, C2H4, CH3OH, CH3CCH, and C6H6.
Yagi K, Hirao K, Taketsugu T, Schmidt MW, Gordon MS., J Chem Phys 121(3), 2004
PMID: 15260682
Separable dual-space Gaussian pseudopotentials.
Goedecker S, Teter M, Hutter J., Phys. Rev., B Condens. Matter 54(3), 1996
PMID: 9986014

Lippert, Mol. Phys. 92(), 1997

Berger, Z. Naturforsch., B: J. Chem. Sci. 64b(), 2009

Reuter, Z. Naturforsch., B: J. Chem. Sci. 71(), 2016

Vishnevskiy, J. Mol. Struct. 833(), 2007

Vishnevskiy, J. Mol. Struct. 871(), 2007

Halkier, Chem. Phys. Lett. 274(), 1997

Paizs, J. Comput. Chem. 22(), 2001

Landau, 1999

Bastiansen, Acta Crystallogr. 13(), 1960

Morino, Acta Crystallogr. 13(), 1960

Morino, J. Chem. Phys. 36(), 1962

Hoy, Mol. Phys. 24(), 1972

Harvey, J. Comput. Chem. 19(), 1998
Nonergodicity of the Nose-Hoover chain thermostat in computationally achievable time.
Patra PK, Bhattacharya B., Phys Rev E Stat Nonlin Soft Matter Phys 90(4), 2014
PMID: 25375620

Pulay, J. Am. Chem. Soc. 105(), 1983
Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study.
Fischer SA, Ueltschi TW, El-Khoury PZ, Mifflin AL, Hess WP, Wang HF, Cramer CJ, Govind N., J Phys Chem B 120(8), 2015
PMID: 26222601
Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures.
Agarwal V, Huber GW, Conner WC Jr, Auerbach SM., J Chem Phys 135(13), 2011
PMID: 21992323

AUTHOR UNKNOWN, 0
Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations.
Dracinsky M, Bour P, Hodgkinson P., J Chem Theory Comput 12(3), 2016
PMID: 26857802

Liu, Nature 381(), 1996

Foulkes, Rev. Mod. Phys. 73(), 2001

Voevodin, Open Syst. J. (), 2012
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27722605
PubMed | Europe PMC

Suchen in

Google Scholar