Magnesium-aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression

Fernandes de Brito L, Irla M, Walter T, Wendisch VF (2017)
Applied Microbiology and Biotechnology 101(2): 735-747.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2017
Zeitschriftentitel
Applied Microbiology and Biotechnology
Band
101
Ausgabe
2
Seite(n)
735-747
ISSN
0175-7598
eISSN
1432-0614
Page URI
https://pub.uni-bielefeld.de/record/2906606

Zitieren

Fernandes de Brito L, Irla M, Walter T, Wendisch VF. Magnesium-aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression. Applied Microbiology and Biotechnology. 2017;101(2):735-747.
Fernandes de Brito, L., Irla, M., Walter, T., & Wendisch, V. F. (2017). Magnesium-aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression. Applied Microbiology and Biotechnology, 101(2), 735-747. doi:10.1007/s00253-016-7999-1
Fernandes de Brito, Luciana, Irla, Marta, Walter, Tatjana, and Wendisch, Volker F. 2017. “Magnesium-aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression”. Applied Microbiology and Biotechnology 101 (2): 735-747.
Fernandes de Brito, L., Irla, M., Walter, T., and Wendisch, V. F. (2017). Magnesium-aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression. Applied Microbiology and Biotechnology 101, 735-747.
Fernandes de Brito, L., et al., 2017. Magnesium-aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression. Applied Microbiology and Biotechnology, 101(2), p 735-747.
L. Fernandes de Brito, et al., “Magnesium-aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression”, Applied Microbiology and Biotechnology, vol. 101, 2017, pp. 735-747.
Fernandes de Brito, L., Irla, M., Walter, T., Wendisch, V.F.: Magnesium-aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression. Applied Microbiology and Biotechnology. 101, 735-747 (2017).
Fernandes de Brito, Luciana, Irla, Marta, Walter, Tatjana, and Wendisch, Volker F. “Magnesium-aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression”. Applied Microbiology and Biotechnology 101.2 (2017): 735-747.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

44 References

Daten bereitgestellt von Europe PubMed Central.

Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine.
Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, Bremer E, Wittmann C., Microb. Cell Fact. 12(), 2013
PMID: 24228689
Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum.
Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH, Passaglia LM., Int. J. Syst. Evol. Microbiol. 60(Pt 1), 2009
PMID: 19648317
Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil
Beneduzi A, Bruno B. Lisboa , Fernanda Moreira , Jose Ivo Baldani , Luciane Maria P. Passaglia , Luciano K. Vargas , Pedro B. Costa , Rodrigo Favreto ., Agric., Ecosyst. Environ., Appl. Soil Ecol. 63(), 2013
PMID: IND500606026
Systems biology of recombinant protein production using Bacillus megaterium.
Biedendieck R, Borgmeier C, Bunk B, Stammen S, Scherling C, Meinhardt F, Wittmann C, Jahn D., Meth. Enzymol. 500(), 2011
PMID: 21943898
Complete genome sequence of Paenibacillus riograndensis SBR5(T), a Gram-positive diazotrophic rhizobacterium.
Brito LF, Bach E, Kalinowski J, Ruckert C, Wibberg D, Passaglia LM, Wendisch VF., J. Biotechnol. 207(), 2015
PMID: 25959170
A simple bacterial transformation method using magnesium- and calcium-aminoclays.
Choi HA, Lee YC, Lee JY, Shin HJ, Han HK, Kim GJ., J. Microbiol. Methods 95(2), 2013
PMID: 23911572
Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
Cleto S, Jensen JV, Wendisch VF, Lu TK., ACS Synth Biol 5(5), 2016
PMID: 26829286
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.
Datsenko KA, Wanner BL., Proc. Natl. Acad. Sci. U.S.A. 97(12), 2000
PMID: 10829079
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Alternative nitrogenase and pseudogenes: unique features of the Paenibacillus riograndensis nitrogen fixation system.
Fernandes Gde C, Trarbach LJ, de Campos SB, Beneduzi A, Passaglia LM., Res. Microbiol. 165(7), 2014
PMID: 24956360
Magnesium and calcium organophyllosilicates: synthesis and in vitro cytotoxicity study.
Han HK, Lee YC, Lee MY, Patil AJ, Shin HJ., ACS Appl Mater Interfaces 3(7), 2011
PMID: 21609130
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Plasmid transformation of Escherichia coli and other bacteria.
Hanahan D, Jessee J, Bloom FR., Meth. Enzymol. 204(), 1991
PMID: 1943786
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.
Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 78(15), 2012
PMID: 22610424
Development of biotin-prototrophic and -hyperauxotrophic Corynebacterium glutamicum strains.
Ikeda M, Miyamoto A, Mutoh S, Kitano Y, Tajima M, Shirakura D, Takasaki M, Mitsuhashi S, Takeno S., Appl. Environ. Microbiol. 79(15), 2013
PMID: 23709504
Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.
Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE., Appl. Environ. Microbiol. 75(3), 2008
PMID: 19060158
CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.
Jiang W, Marraffini LA., Annu. Rev. Microbiol. 69(), 2015
PMID: 26209264
The biotin enzyme family: conserved structural motifs and domain rearrangements.
Jitrapakdee S, Wallace JC., Curr. Protein Pept. Sci. 4(3), 2003
PMID: 12769720
Forms of soil biotin.
JONES PD, GRAHAM V, SEGAL L, BAILLIE WJ, BRIGGS MH., Life Sci (1962) 1(), 1962
PMID: 13964779

A, Microbiology 147(), 2016
A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii.
Kim S, Lee YC, Cho DH, Lee HU, Huh YS, Kim GJ, Kim HS., PLoS ONE 9(7), 2014
PMID: 24988123
Parameters affecting plasmid stability in Bacillus subtilis.
Leonhardt H, Alonso JC., Gene 103(1), 1991
PMID: 1908807
Evolution and classification of the CRISPR-Cas systems.
Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV., Nat. Rev. Microbiol. 9(6), 2011
PMID: 21552286
Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability.
Nguyen HD, Nguyen QA, Ferreira RC, Ferreira LC, Tran LT, Schumann W., Plasmid 54(3), 2005
PMID: 16005967
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Gotker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J. Biotechnol. 192 Pt B(), 2014
PMID: 24486440
Inactivation of the phosphoglucomutase gene pgm in Paenibacillus polymyxa leads to overproduction of fusaricidin.
Kim HR, Park SY, Kim SB, Jeong H, Choi SK, Park SH., J. Ind. Microbiol. Biotechnol. 41(9), 2014
PMID: 24939175

A, J Microbiol Methods 19(), 1994

J, 2001

AUTHOR UNKNOWN, 0
Iron deficiency resistance mechanisms enlightened by gene expression analysis in Paenibacillus riograndensis SBR5.
Sperb ER, Tadra-Sfeir MZ, Sperotto RA, Fernandes Gde C, Pedrosa Fde O, de Souza EM, Passaglia LM., Res. Microbiol. 167(6), 2016
PMID: 27130283
CRISPR-Cas9 Based Engineering of Actinomycetal Genomes.
Tong Y, Charusanti P, Zhang L, Weber T, Lee SY., ACS Synth Biol 4(9), 2015
PMID: 25806970
Plasmid uptake by bacteria: a comparison of methods and efficiencies.
Yoshida N, Sato M., Appl. Microbiol. Biotechnol. 83(5), 2009
PMID: 19471921
Chrysotile asbestos fibers mediate transformation of Escherichia coli by exogenous plasmid DNA.
Yoshida N, Ikeda T, Yoshida T, Sengoku T, Ogawa K., FEMS Microbiol. Lett. 195(2), 2001
PMID: 11179641
Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321.
Yu B, Sun J, Bommareddy RR, Song L, Zeng AP., Appl. Environ. Microbiol. 77(12), 2011
PMID: 21531839
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27878581
PubMed | Europe PMC

Suchen in

Google Scholar