Peripheral Processing Facilitates Optic Flow-Based Depth Perception

Li J, Lindemann JP, Egelhaaf M (2016)
Frontiers in Computational Neuroscience 10(10): 111.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.58 MB
Forschungsgruppe
Bio-inspired lightweight omni-directional visual system with local gain control
Abstract / Bemerkung
Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light conditions.
Stichworte
spatial vision; optic flow; brightness adaptation; photoreceptors; LMCs; computational modeling; fly; natural environments
Erscheinungsjahr
2016
Zeitschriftentitel
Frontiers in Computational Neuroscience
Band
10
Ausgabe
10
Art.-Nr.
111
ISSN
1662-5188
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2906512

Zitieren

Li J, Lindemann JP, Egelhaaf M. Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience. 2016;10(10): 111.
Li, J., Lindemann, J. P., & Egelhaaf, M. (2016). Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience, 10(10), 111. doi:10.3389/fncom.2016.00111
Li, Jinglin, Lindemann, Jens Peter, and Egelhaaf, Martin. 2016. “Peripheral Processing Facilitates Optic Flow-Based Depth Perception”. Frontiers in Computational Neuroscience 10 (10): 111.
Li, J., Lindemann, J. P., and Egelhaaf, M. (2016). Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience 10:111.
Li, J., Lindemann, J.P., & Egelhaaf, M., 2016. Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience, 10(10): 111.
J. Li, J.P. Lindemann, and M. Egelhaaf, “Peripheral Processing Facilitates Optic Flow-Based Depth Perception”, Frontiers in Computational Neuroscience, vol. 10, 2016, : 111.
Li, J., Lindemann, J.P., Egelhaaf, M.: Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience. 10, : 111 (2016).
Li, Jinglin, Lindemann, Jens Peter, and Egelhaaf, Martin. “Peripheral Processing Facilitates Optic Flow-Based Depth Perception”. Frontiers in Computational Neuroscience 10.10 (2016): 111.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:40:06Z
MD5 Prüfsumme
097319520f37fdb528a3b51ca6380653


Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

63 References

Daten bereitgestellt von Europe PubMed Central.

Motion-detecting circuits in flies: coming into view.
Silies M, Gohl DM, Clandinin TR., Annu. Rev. Neurosci. 37(), 2014
PMID: 25032498
Nonlinear models of the first synapse in the light-adapted fly retina.
Juusola M, Weckstrom M, Uusitalo RO, Korenberg MJ, French AS., J. Neurophysiol. 74(6), 1995
PMID: 8747212
Defining the computational structure of the motion detector in Drosophila.
Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR., Neuron 70(6), 2011
PMID: 21689602
Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector.
Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A., Curr. Biol. 25(17), 2015
PMID: 26234212
Modular use of peripheral input channels tunes motion-detecting circuitry.
Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR., Neuron 79(1), 2013
PMID: 23849199
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Evaluating sensitivity changing mechanisms in light-adapted photoreceptors.
Normann RA, Perlman I., Vision Res. 19(4), 1979
PMID: 473607
Body saccades of Drosophila consist of stereotyped banked turns.
Muijres FT, Elzinga MJ, Iwasaki NA, Dickinson MH., J. Exp. Biol. 218(Pt 6), 2015
PMID: 25657212
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Processing properties of ON and OFF pathways for Drosophila motion detection.
Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C., Nature 512(7515), 2014
PMID: 25043016
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
The locust's use of motion parallax to measure distance.
Sobel EC., J. Comp. Physiol. A 167(5), 1990
PMID: 2074547
Spatiotemporal contrast sensitivity of early vision.
Van Hateren JH., Vision Res. 33(2), 1993
PMID: 8447098
Wide-field feedback neurons dynamically tune early visual processing.
Tuthill JC, Nern A, Rubin GM, Reiser MB., Neuron 82(4), 2014
PMID: 24853944
Change in neuronal firing patterns in the process of motor command generation for the ocular following response.
Takemura A, Inoue Y, Gomi H, Kawato M, Kawano K., J. Neurophysiol. 86(4), 2001
PMID: 11600636
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969
Models of motion detection.
Borst A., Nat. Neurosci. 3 Suppl(), 2000
PMID: 11127831
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila.
Reiff DF, Plett J, Mank M, Griesbeck O, Borst A., Nat. Neurosci. 13(8), 2010
PMID: 20622873
A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light.
Mafrica S, Godiot S, Menouni M, Boyron M, Expert F, Juston R, Marchand N, Ruffier F, Viollet S., Opt Express 23(5), 2015
PMID: 25836794
S-potentials from colour units in the retina of fish (Cyprinidae).
Naka KI, Rushton WA., J. Physiol. (Lond.) 185(3), 1966
PMID: 5918058
Design principles of insect and vertebrate visual systems.
Sanes JR, Zipursky SL., Neuron 66(1), 2010
PMID: 20399726
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Neural Circuits for Motion Vision in the Fly.
Borst A., Cold Spring Harb. Symp. Quant. Biol. 79(), 2014
PMID: 25527086
The free-flight response of Drosophila to motion of the visual environment.
Mronz M, Lehmann FO., J. Exp. Biol. 211(Pt 13), 2008
PMID: 18552291
Symmetries in stimulus statistics shape the form of visual motion estimators.
Fitzgerald JE, Katsov AY, Clandinin TR, Schnitzer MJ., Proc. Natl. Acad. Sci. U.S.A. 108(31), 2011
PMID: 21768376
Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation.
Leonhardt A, Ammer G, Meier M, Serbe E, Bahl A, Borst A., Nat. Neurosci. 19(5), 2016
PMID: 26928063
Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision.
Mauss AS, Meier M, Serbe E, Borst A., J. Neurosci. 34(6), 2014
PMID: 24501364
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Gaze strategy in the free flying zebra finch (Taeniopygia guttata).
Eckmeier D, Geurten BR, Kress D, Mertes M, Kern R, Egelhaaf M, Bischof HJ., PLoS ONE 3(12), 2008
PMID: 19107185
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
A simple coding procedure enhances a neuron's information capacity.
Laughlin S., Z. Naturforsch., C, Biosci. 36(9-10), 1981
PMID: 7303823
Bio-inspired motion detection in an FPGA-based smart camera module.
Kohler T, Rochter F, Lindemann JP, Moller R., Bioinspir Biomim 4(1), 2009
PMID: 19258686
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Real and optimal neural images in early vision.
van Hateren JH., Nature 360(6399), 1992
PMID: 1436076
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Nonlinear circuits for naturalistic visual motion estimation.
Fitzgerald JE, Clark DA., Elife 4(), 2015
PMID: 26499494
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Bumblebee Homing: The Fine Structure of Head Turning Movements.
Boeddeker N, Mertes M, Dittmar L, Egelhaaf M., PLoS ONE 10(9), 2015
PMID: 26352836
Bio-inspired visual ego-rotation sensor for MAVs.
Plett J, Bahl A, Buss M, Kuhnlenz K, Borst A., Biol Cybern 106(1), 2012
PMID: 22350507
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Elaborated Reichardt detectors.
van Santen JP, Sperling G., J Opt Soc Am A 2(2), 1985
PMID: 3973763
Spatial and temporal selectivity of the human motion detection system.
Anderson SJ, Burr DC., Vision Res. 25(8), 1985
PMID: 4071994
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Fundamental mechanisms of visual motion detection: models, cells and functions.
Clifford CW, Ibbotson MR., Prog. Neurobiol. 68(6), 2002
PMID: 12576294
Internal structure of the fly elementary motion detector.
Eichner H, Joesch M, Schnell B, Reiff DF, Borst A., Neuron 70(6), 2011
PMID: 21689601
Flies and humans share a motion estimation strategy that exploits natural scene statistics.
Clark DA, Fitzgerald JE, Ales JM, Gohl DM, Silies MA, Norcia AM, Clandinin TR., Nat. Neurosci. 17(2), 2014
PMID: 24390225
Orientation Selectivity Sharpens Motion Detection in Drosophila.
Fisher YE, Silies M, Clandinin TR., Neuron 88(2), 2015
PMID: 26456048
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27818631
PubMed | Europe PMC

Suchen in

Google Scholar