Peripheral Processing Facilitates Optic Flow-Based Depth Perception
Li J, Lindemann JP, Egelhaaf M (2016)
Frontiers in Computational Neuroscience 10(10): 111.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Einrichtung
Forschungsgruppe
Bio-inspired lightweight omni-directional visual system with local gain control
Abstract / Bemerkung
Flying insects, such as flies or bees, rely on consistent information regarding the
depth structure of the environment when performing their flight maneuvers in cluttered natural
environments. These behaviors include avoiding collisions, approaching targets or spatial
navigation. Insects are thought to obtain depth information visually from the retinal image
displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual
system is processed by a mechanism that can be modeled by correlation-type elementary motion
detectors (EMDs). However, it is still an open question how spatial information can be extracted
reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially
if the vast range of light intensities encountered in natural environments is taken into account.
This question will be addressed here by systematically modeling the peripheral visual system of
flies, including various adaptive mechanisms. Different model variants of the peripheral visual
system were stimulated with image sequences that mimic the panoramic visual input during
translational ego-motion in various natural environments, and the resulting peripheral signals were
fed into an array of EMDs. We characterized the influence of each peripheral computational unit on
the representation of spatial information in the EMD responses. Our model simulations reveal that
information about the overall light level needs to be eliminated from the EMD input as is
accomplished under light-adapted conditions in the insect peripheral visual system. The response
characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces
the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness
of objects and, especially, of their contours. We furthermore show that local brightness adaptation
of photoreceptors allows for spatial vision under a wide range of dynamic light
conditions.
Stichworte
spatial vision;
optic flow;
brightness adaptation;
photoreceptors;
LMCs;
computational modeling;
fly;
natural environments
Erscheinungsjahr
2016
Zeitschriftentitel
Frontiers in Computational Neuroscience
Band
10
Ausgabe
10
Art.-Nr.
111
ISSN
1662-5188
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2906512
Zitieren
Li J, Lindemann JP, Egelhaaf M. Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience. 2016;10(10): 111.
Li, J., Lindemann, J. P., & Egelhaaf, M. (2016). Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience, 10(10), 111. doi:10.3389/fncom.2016.00111
Li, Jinglin, Lindemann, Jens Peter, and Egelhaaf, Martin. 2016. “Peripheral Processing Facilitates Optic Flow-Based Depth Perception”. Frontiers in Computational Neuroscience 10 (10): 111.
Li, J., Lindemann, J. P., and Egelhaaf, M. (2016). Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience 10:111.
Li, J., Lindemann, J.P., & Egelhaaf, M., 2016. Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience, 10(10): 111.
J. Li, J.P. Lindemann, and M. Egelhaaf, “Peripheral Processing Facilitates Optic Flow-Based Depth Perception”, Frontiers in Computational Neuroscience, vol. 10, 2016, : 111.
Li, J., Lindemann, J.P., Egelhaaf, M.: Peripheral Processing Facilitates Optic Flow-Based Depth Perception. Frontiers in Computational Neuroscience. 10, : 111 (2016).
Li, Jinglin, Lindemann, Jens Peter, and Egelhaaf, Martin. “Peripheral Processing Facilitates Optic Flow-Based Depth Perception”. Frontiers in Computational Neuroscience 10.10 (2016): 111.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-25T06:40:06Z
MD5 Prüfsumme
097319520f37fdb528a3b51ca6380653
Link(s) zu Volltext(en)
Access Level
Closed Access
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Spatial Encoding of Translational Optic Flow in Planar Scenes by Elementary Motion Detector Arrays.
Lecoeur J, Baird E, Floreano D., Sci Rep 8(1), 2018
PMID: 29643402
Lecoeur J, Baird E, Floreano D., Sci Rep 8(1), 2018
PMID: 29643402
63 References
Daten bereitgestellt von Europe PubMed Central.
Motion-detecting circuits in flies: coming into view.
Silies M, Gohl DM, Clandinin TR., Annu. Rev. Neurosci. 37(), 2014
PMID: 25032498
Silies M, Gohl DM, Clandinin TR., Annu. Rev. Neurosci. 37(), 2014
PMID: 25032498
Nonlinear models of the first synapse in the light-adapted fly retina.
Juusola M, Weckstrom M, Uusitalo RO, Korenberg MJ, French AS., J. Neurophysiol. 74(6), 1995
PMID: 8747212
Juusola M, Weckstrom M, Uusitalo RO, Korenberg MJ, French AS., J. Neurophysiol. 74(6), 1995
PMID: 8747212
Temporal statistics of natural image sequences generated by movements with insect flight characteristics.
Schwegmann A, Lindemann JP, Egelhaaf M., PLoS ONE 9(10), 2014
PMID: 25340761
Schwegmann A, Lindemann JP, Egelhaaf M., PLoS ONE 9(10), 2014
PMID: 25340761
Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis.
Schwegmann A, Lindemann JP, Egelhaaf M., Front Comput Neurosci 8(), 2014
PMID: 25136314
Schwegmann A, Lindemann JP, Egelhaaf M., Front Comput Neurosci 8(), 2014
PMID: 25136314
Prototypical components of honeybee homing flight behavior depend on the visual appearance of objects surrounding the goal.
Braun E, Dittmar L, Boeddeker N, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 22279431
Braun E, Dittmar L, Boeddeker N, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 22279431
Defining the computational structure of the motion detector in Drosophila.
Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR., Neuron 70(6), 2011
PMID: 21689602
Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR., Neuron 70(6), 2011
PMID: 21689602
Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector.
Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A., Curr. Biol. 25(17), 2015
PMID: 26234212
Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A., Curr. Biol. 25(17), 2015
PMID: 26234212
Modular use of peripheral input channels tunes motion-detecting circuitry.
Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR., Neuron 79(1), 2013
PMID: 23849199
Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR., Neuron 79(1), 2013
PMID: 23849199
Pattern-dependent response modulations in motion-sensitive visual interneurons--a model study.
Meyer HG, Lindemann JP, Egelhaaf M., PLoS ONE 6(7), 2011
PMID: 21760894
Meyer HG, Lindemann JP, Egelhaaf M., PLoS ONE 6(7), 2011
PMID: 21760894
Local and global responses of insect motion detectors to the spatial structure of natural scenes.
O'Carroll DC, Barnett PD, Nordstrom K., J Vis 11(14), 2011
PMID: 22201615
O'Carroll DC, Barnett PD, Nordstrom K., J Vis 11(14), 2011
PMID: 22201615
Evaluating sensitivity changing mechanisms in light-adapted photoreceptors.
Normann RA, Perlman I., Vision Res. 19(4), 1979
PMID: 473607
Normann RA, Perlman I., Vision Res. 19(4), 1979
PMID: 473607
Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing.
Hennig P, Egelhaaf M., Front Neural Circuits 6(), 2012
PMID: 22461769
Hennig P, Egelhaaf M., Front Neural Circuits 6(), 2012
PMID: 22461769
Motion as a source of environmental information: a fresh view on biological motion computation by insect brains.
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
Body saccades of Drosophila consist of stereotyped banked turns.
Muijres FT, Elzinga MJ, Iwasaki NA, Dickinson MH., J. Exp. Biol. 218(Pt 6), 2015
PMID: 25657212
Muijres FT, Elzinga MJ, Iwasaki NA, Dickinson MH., J. Exp. Biol. 218(Pt 6), 2015
PMID: 25657212
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Processing properties of ON and OFF pathways for Drosophila motion detection.
Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C., Nature 512(7515), 2014
PMID: 25043016
Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C., Nature 512(7515), 2014
PMID: 25043016
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
The locust's use of motion parallax to measure distance.
Sobel EC., J. Comp. Physiol. A 167(5), 1990
PMID: 2074547
Sobel EC., J. Comp. Physiol. A 167(5), 1990
PMID: 2074547
Spatiotemporal contrast sensitivity of early vision.
Van Hateren JH., Vision Res. 33(2), 1993
PMID: 8447098
Van Hateren JH., Vision Res. 33(2), 1993
PMID: 8447098
Wide-field feedback neurons dynamically tune early visual processing.
Tuthill JC, Nern A, Rubin GM, Reiser MB., Neuron 82(4), 2014
PMID: 24853944
Tuthill JC, Nern A, Rubin GM, Reiser MB., Neuron 82(4), 2014
PMID: 24853944
Change in neuronal firing patterns in the process of motor command generation for the ocular following response.
Takemura A, Inoue Y, Gomi H, Kawato M, Kawano K., J. Neurophysiol. 86(4), 2001
PMID: 11600636
Takemura A, Inoue Y, Gomi H, Kawato M, Kawano K., J. Neurophysiol. 86(4), 2001
PMID: 11600636
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969
Insect-Inspired Self-Motion Estimation with Dense Flow Fields--An Adaptive Matched Filter Approach.
Strubbe S, Sturzl W, Egelhaaf M., PLoS ONE 10(8), 2015
PMID: 26308839
Strubbe S, Sturzl W, Egelhaaf M., PLoS ONE 10(8), 2015
PMID: 26308839
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila.
Reiff DF, Plett J, Mank M, Griesbeck O, Borst A., Nat. Neurosci. 13(8), 2010
PMID: 20622873
Reiff DF, Plett J, Mank M, Griesbeck O, Borst A., Nat. Neurosci. 13(8), 2010
PMID: 20622873
A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light.
Mafrica S, Godiot S, Menouni M, Boyron M, Expert F, Juston R, Marchand N, Ruffier F, Viollet S., Opt Express 23(5), 2015
PMID: 25836794
Mafrica S, Godiot S, Menouni M, Boyron M, Expert F, Juston R, Marchand N, Ruffier F, Viollet S., Opt Express 23(5), 2015
PMID: 25836794
S-potentials from colour units in the retina of fish (Cyprinidae).
Naka KI, Rushton WA., J. Physiol. (Lond.) 185(3), 1966
PMID: 5918058
Naka KI, Rushton WA., J. Physiol. (Lond.) 185(3), 1966
PMID: 5918058
Design principles of insect and vertebrate visual systems.
Sanes JR, Zipursky SL., Neuron 66(1), 2010
PMID: 20399726
Sanes JR, Zipursky SL., Neuron 66(1), 2010
PMID: 20399726
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Neural Circuits for Motion Vision in the Fly.
Borst A., Cold Spring Harb. Symp. Quant. Biol. 79(), 2014
PMID: 25527086
Borst A., Cold Spring Harb. Symp. Quant. Biol. 79(), 2014
PMID: 25527086
The free-flight response of Drosophila to motion of the visual environment.
Mronz M, Lehmann FO., J. Exp. Biol. 211(Pt 13), 2008
PMID: 18552291
Mronz M, Lehmann FO., J. Exp. Biol. 211(Pt 13), 2008
PMID: 18552291
Symmetries in stimulus statistics shape the form of visual motion estimators.
Fitzgerald JE, Katsov AY, Clandinin TR, Schnitzer MJ., Proc. Natl. Acad. Sci. U.S.A. 108(31), 2011
PMID: 21768376
Fitzgerald JE, Katsov AY, Clandinin TR, Schnitzer MJ., Proc. Natl. Acad. Sci. U.S.A. 108(31), 2011
PMID: 21768376
Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation.
Leonhardt A, Ammer G, Meier M, Serbe E, Bahl A, Borst A., Nat. Neurosci. 19(5), 2016
PMID: 26928063
Leonhardt A, Ammer G, Meier M, Serbe E, Bahl A, Borst A., Nat. Neurosci. 19(5), 2016
PMID: 26928063
Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision.
Mauss AS, Meier M, Serbe E, Borst A., J. Neurosci. 34(6), 2014
PMID: 24501364
Mauss AS, Meier M, Serbe E, Borst A., J. Neurosci. 34(6), 2014
PMID: 24501364
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Gaze strategy in the free flying zebra finch (Taeniopygia guttata).
Eckmeier D, Geurten BR, Kress D, Mertes M, Kern R, Egelhaaf M, Bischof HJ., PLoS ONE 3(12), 2008
PMID: 19107185
Eckmeier D, Geurten BR, Kress D, Mertes M, Kern R, Egelhaaf M, Bischof HJ., PLoS ONE 3(12), 2008
PMID: 19107185
A simple coding procedure enhances a neuron's information capacity.
Laughlin S., Z. Naturforsch., C, Biosci. 36(9-10), 1981
PMID: 7303823
Laughlin S., Z. Naturforsch., C, Biosci. 36(9-10), 1981
PMID: 7303823
How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization.
Kress D, van Bokhorst E, Lentink D., PLoS ONE 10(6), 2015
PMID: 26107413
Kress D, van Bokhorst E, Lentink D., PLoS ONE 10(6), 2015
PMID: 26107413
Bio-inspired motion detection in an FPGA-based smart camera module.
Kohler T, Rochter F, Lindemann JP, Moller R., Bioinspir Biomim 4(1), 2009
PMID: 19258686
Kohler T, Rochter F, Lindemann JP, Moller R., Bioinspir Biomim 4(1), 2009
PMID: 19258686
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Real and optimal neural images in early vision.
van Hateren JH., Nature 360(6399), 1992
PMID: 1436076
van Hateren JH., Nature 360(6399), 1992
PMID: 1436076
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Information theoretical evaluation of parametric models of gain control in blowfly photoreceptor cells.
van Hateren JH, Snippe HP., Vision Res. 41(14), 2001
PMID: 11369048
van Hateren JH, Snippe HP., Vision Res. 41(14), 2001
PMID: 11369048
Nonlinear circuits for naturalistic visual motion estimation.
Fitzgerald JE, Clark DA., Elife 4(), 2015
PMID: 26499494
Fitzgerald JE, Clark DA., Elife 4(), 2015
PMID: 26499494
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Bumblebee Homing: The Fine Structure of Head Turning Movements.
Boeddeker N, Mertes M, Dittmar L, Egelhaaf M., PLoS ONE 10(9), 2015
PMID: 26352836
Boeddeker N, Mertes M, Dittmar L, Egelhaaf M., PLoS ONE 10(9), 2015
PMID: 26352836
Bio-inspired visual ego-rotation sensor for MAVs.
Plett J, Bahl A, Buss M, Kuhnlenz K, Borst A., Biol Cybern 106(1), 2012
PMID: 22350507
Plett J, Bahl A, Buss M, Kuhnlenz K, Borst A., Biol Cybern 106(1), 2012
PMID: 22350507
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Processing of natural time series of intensities by the visual system of the blowfly.
van Hateren JH., Vision Res. 37(23), 1997
PMID: 9425553
van Hateren JH., Vision Res. 37(23), 1997
PMID: 9425553
Spatial and temporal selectivity of the human motion detection system.
Anderson SJ, Burr DC., Vision Res. 25(8), 1985
PMID: 4071994
Anderson SJ, Burr DC., Vision Res. 25(8), 1985
PMID: 4071994
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Fundamental mechanisms of visual motion detection: models, cells and functions.
Clifford CW, Ibbotson MR., Prog. Neurobiol. 68(6), 2002
PMID: 12576294
Clifford CW, Ibbotson MR., Prog. Neurobiol. 68(6), 2002
PMID: 12576294
Internal structure of the fly elementary motion detector.
Eichner H, Joesch M, Schnell B, Reiff DF, Borst A., Neuron 70(6), 2011
PMID: 21689601
Eichner H, Joesch M, Schnell B, Reiff DF, Borst A., Neuron 70(6), 2011
PMID: 21689601
Flies and humans share a motion estimation strategy that exploits natural scene statistics.
Clark DA, Fitzgerald JE, Ales JM, Gohl DM, Silies MA, Norcia AM, Clandinin TR., Nat. Neurosci. 17(2), 2014
PMID: 24390225
Clark DA, Fitzgerald JE, Ales JM, Gohl DM, Silies MA, Norcia AM, Clandinin TR., Nat. Neurosci. 17(2), 2014
PMID: 24390225
Orientation Selectivity Sharpens Motion Detection in Drosophila.
Fisher YE, Silies M, Clandinin TR., Neuron 88(2), 2015
PMID: 26456048
Fisher YE, Silies M, Clandinin TR., Neuron 88(2), 2015
PMID: 26456048
Sensory coding in the vertebrate retina: towards an adaptive control of visual sensitivity.
Beaudot WH., Network 7(2), 1996
PMID: 16754392
Beaudot WH., Network 7(2), 1996
PMID: 16754392
Material in PUB:
Teil dieser Dissertation
Functional significance of adaption in optic flow-based spatial vision in flies
Li J (2019)
Bielefeld: Universität Bielefeld.
Li J (2019)
Bielefeld: Universität Bielefeld.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 27818631
PubMed | Europe PMC
Suchen in