CIDME: Short distances measured with long chirp pulses

Doll A, Qi M, Godt A, Jeschke G (2016)
Journal of Magnetic Resonance 273: 73-82.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
; ; ;
Abstract / Bemerkung
Abstract Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The ”chirp-induced dipolar modulation enhancement” (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse ”relaxation-induced dipolar modulation enhancement” (RIDME) pulse sequence: While dipolar modulation in \{RIDME\} is due to stochastic spin flips during longitudinal storage, modulation in \{CIDME\} is due to the pump pulse during longitudinal storage. Experimentally, \{CIDME\} is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between \{DEER\} using short chirp pump pulses of 64 ns duration and \{CIDME\} using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of \{CIDME\} for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized ”non-routine” applications or different types of spin labels. In particular, the advantage of prolonged \{CIDME\} pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1 GHz, a Gd-Gd modulation depth larger than 10% is achieved, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed. Moreover, a \{CIDME\} experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10 μ s, however, \{CIDME\} appears rather susceptible to artifacts. For nitroxide-nitroxide experiments, these currently inhibit a faithful data analysis. To facilitate further developments, the artifacts are characterized experimentally. In addition, effects that are specific to the high spin of S = 7 / 2 Gd-centers are examined. Herein, population transfer within the observer spin’s multiplet due to the pump pulse as well as excitation of dipolar harmonics are discussed.
Journal of Magnetic Resonance


Doll A, Qi M, Godt A, Jeschke G. CIDME: Short distances measured with long chirp pulses. Journal of Magnetic Resonance. 2016;273:73-82.
Doll, A., Qi, M., Godt, A., & Jeschke, G. (2016). CIDME: Short distances measured with long chirp pulses. Journal of Magnetic Resonance, 273, 73-82. doi:10.1016/j.jmr.2016.10.011
Doll, A., Qi, M., Godt, A., and Jeschke, G. (2016). CIDME: Short distances measured with long chirp pulses. Journal of Magnetic Resonance 273, 73-82.
Doll, A., et al., 2016. CIDME: Short distances measured with long chirp pulses. Journal of Magnetic Resonance, 273, p 73-82.
A. Doll, et al., “CIDME: Short distances measured with long chirp pulses”, Journal of Magnetic Resonance, vol. 273, 2016, pp. 73-82.
Doll, A., Qi, M., Godt, A., Jeschke, G.: CIDME: Short distances measured with long chirp pulses. Journal of Magnetic Resonance. 273, 73-82 (2016).
Doll, Andrin, Qi, Mian, Godt, Adelheid, and Jeschke, Gunnar. “CIDME: Short distances measured with long chirp pulses”. Journal of Magnetic Resonance 273 (2016): 73-82.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer.
Band A, Donohue MP, Epel B, Madhu S, Szalai VA., J Magn Reson 288(), 2018
PMID: 29414061
Double electron-electron resonance with multiple non-selective chirp refocusing.
Doll A, Jeschke G., Phys Chem Chem Phys 19(2), 2017
PMID: 27976758
Artefact suppression in 5-pulse double electron electron resonance for distance distribution measurements.
Breitgoff FD, Soetbeer J, Doll A, Jeschke G, Polyhach YO., Phys Chem Chem Phys 19(24), 2017
PMID: 28590496
Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels.
Keller K, Mertens V, Qi M, Nalepa AI, Godt A, Savitsky A, Jeschke G, Yulikov M., Phys Chem Chem Phys 19(27), 2017
PMID: 28660955
Perspectives of shaped pulses for EPR spectroscopy.
Spindler PE, Schöps P, Kallies W, Glaser SJ, Prisner TF., J Magn Reson 280(), 2017
PMID: 28579101
Wideband frequency-swept excitation in pulsed EPR spectroscopy.
Doll A, Jeschke G., J Magn Reson 280(), 2017
PMID: 28579102
Time domain simulation of Gd3+-Gd3+ distance measurements by EPR.
Manukovsky N, Feintuch A, Kuprov I, Goldfarb D., J Chem Phys 147(4), 2017
PMID: 28764344
Pulsed triple electron resonance (TRIER) for dipolar correlation spectroscopy.
Pribitzer S, Sajid M, Hülsmann M, Godt A, Jeschke G., J Magn Reson 282(), 2017
PMID: 28802243

48 References

Daten bereitgestellt von Europe PubMed Central.

Dead-time free measurement of dipole-dipole interactions between electron spins.
Pannier M, Veit S, Godt A, Jeschke G, Spiess HW., J. Magn. Reson. 142(2), 2000
PMID: 10648151
Long-range distance determinations in biomacromolecules by EPR spectroscopy.
Schiemann O, Prisner TF., Q. Rev. Biophys. 40(1), 2007
PMID: 17565764
DEER distance measurements on proteins.
Jeschke G., Annu Rev Phys Chem 63(), 2012
PMID: 22404592
Pulse dipolar electron spin resonance: distance measurements
Borbat, 2013
Broadband and adiabatic inversion of a two-level system by phase-modulated pulses.
Baum J, Tycko R, Pines A., Phys. Rev., A 32(6), 1985
PMID: 9896511
The return of the frequency sweep: designing adiabatic pulses for contemporary NMR.
Garwood M, DelaBarre L., J. Magn. Reson. 153(2), 2001
PMID: 11740891
Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.
Doll A, Pribitzer S, Tschaggelar R, Jeschke G., J. Magn. Reson. 230(), 2013
PMID: 23434533
Broadband inversion PELDOR spectroscopy with partially adiabatic shaped pulses.
Spindler PE, Glaser SJ, Skinner TE, Prisner TF., Angew. Chem. Int. Ed. Engl. 52(12), 2013
PMID: 23424088
Gd(III)-Gd(III) distance measurements with chirp pump pulses.
Doll A, Qi M, Wili N, Pribitzer S, Godt A, Jeschke G., J. Magn. Reson. 259(), 2015
PMID: 26340436
Sensitivity enhancement by population transfer in Gd(III) spin labels.
Doll A, Qi M, Pribitzer S, Wili N, Yulikov M, Godt A, Jeschke G., Phys Chem Chem Phys 17(11), 2015
PMID: 25697259
Carr-Purcell Pulsed Electron Double Resonance with Shaped Inversion Pulses.
Spindler PE, Waclawska I, Endeward B, Plackmeyer J, Ziegler C, Prisner TF., J Phys Chem Lett 6(21), 2015
PMID: 26538047
EPR-correlated dipolar spectroscopy by Q-band chirp SIFTER.
Doll A, Jeschke G., Phys Chem Chem Phys 18(33), 2016
PMID: 27491304
Coherence Transfer by Passage Pulses in Electron Paramagnetic Resonance Spectroscopy.
Jeschke G, Pribitzer S, Doll A., J Phys Chem B 119(43), 2015
PMID: 25941897
Electron dipole-dipole interaction in ESEEM of nitroxide biradicals
Kulik, Chem. Phys. Lett. 343(), 2001
Pulsed ENDOR experiments
Mims, Proc. R. Soc. A 283(), 1965
Electron dipole-dipole ESEEM in field-step ELDOR of nitroxide biradicals.
Kulik LV, Grishin YA, Dzuba SA, Grigoryev IA, Klyatskaya SV, Vasilevsky SF, Tsvetkov YD., J. Magn. Reson. 157(1), 2002
PMID: 12202133
Mapping the structure of metalloproteins with RIDME
Astashkin, 2015
Distance measurements on orthogonally spin-labeled membrane spanning WALP23 polypeptides.
Lueders P, Jager H, Hemminga MA, Jeschke G, Yulikov M., J Phys Chem B 117(7), 2013
PMID: 23373560
Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods.
Segawa TF, Doppelbauer M, Garbuio L, Doll A, Polyhach YO, Jeschke G., J Chem Phys 144(19), 2016
PMID: 27208942
High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies.
Polyhach Y, Bordignon E, Tschaggelar R, Gandra S, Godt A, Jeschke G., Phys Chem Chem Phys 14(30), 2012
PMID: 22751953
Experimental aspects of chirp NMR spectroscopy
Böhlen, J. Magn. Reson. 102(), 1993
Optimization of pulsed DEER measurements for Gd-based labels: choice of operational frequencies, pulse durations and positions, and temperature.
Raitsimring A, Astashkin AV, Enemark JH, Kaminker I, Goldfarb D, Walter ED, Song Y, Meade TJ., Appl Magn Reson 44(6), 2013
PMID: 23687407
Improved performance of frequency-swept pulses using offset-independent adiabaticity
Tannús, J. Magn. Reson. A 120(), 1996
Highly selective π/2 and π pulse generation
Silver, J. Magn. Reson. 59(), 1984
RIDME Spectroscopy with Gd(III) Centers.
Razzaghi S, Qi M, Nalepa AI, Godt A, Jeschke G, Savitsky A, Yulikov M., J Phys Chem Lett 5(22), 2014
PMID: 26276479
Averaging of nuclear modulation artefacts in RIDME experiments.
Keller K, Doll A, Qi M, Godt A, Jeschke G, Yulikov M., J. Magn. Reson. 272(), 2016
PMID: 27684788
The theory of electron spin-echo signal decay resulting from dipole-dipole interactions between paramagnetic centers in solids
Salikhov, J. Magn. Reson. 42(), 1981
Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd(3+)-DTPA chelate complexes.
Yulikov M, Lueders P, Warsi MF, Chechik V, Jeschke G., Phys Chem Chem Phys 14(30), 2012
PMID: 22743649

Schweiger, 2001
Four-pulse ELDOR theory of the spin 1/2 label pairs extended to overlapping EPR spectra and to overlapping pump and observer excitation bands
Salikhov, Appl. Magn. Reson. 46(), 2015
Gd(III)-Gd(III) EPR distance measurements--the range of accessible distances and the impact of zero field splitting.
Dalaloyan A, Qi M, Ruthstein S, Vega S, Godt A, Feintuch A, Goldfarb D., Phys Chem Chem Phys 17(28), 2015
PMID: 26108866
Overcoming artificial broadening in Gd(3+)-Gd(3+) distance distributions arising from dipolar pseudo-secular terms in DEER experiments.
Cohen MR, Frydman V, Milko P, Iron MA, Abdelkader EH, Lee MD, Swarbrick JD, Raitsimring A, Otting G, Graham B, Feintuch A, Goldfarb D., Phys Chem Chem Phys 18(18), 2016
PMID: 27102158
DeerAnalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data
Jeschke, Appl. Magn. Reson. 30(), 2006
Data analysis procedures for pulse ELDOR measurements of broad distance distributions
Jeschke, Appl. Magn. Reson. 26(), 2004
The determination of pair distance distributions by pulsed ESR using Tikhonov regularization.
Chiang YW, Borbat PP, Freed JH., J. Magn. Reson. 172(2), 2005
PMID: 15649755
RIDME distance measurements using Gd(iii) tags with a narrow central transition.
Collauto A, Frydman V, Lee MD, Abdelkader EH, Feintuch A, Swarbrick JD, Graham B, Otting G, Goldfarb D., Phys Chem Chem Phys 18(28), 2016
PMID: 27355583
130GHz ESEEM induced by electron-electron interaction in biradical
Kulik, J. Magn. Reson. 159(), 2002
Use of additional fast-relaxing paramagnetic species for improvement of RIDME performance
Zaripov, Appl. Magn. Reson. 40(), 2010
High-power 95GHz pulsed electron spin resonance spectrometer
Hofbauer, Rev. Sci. Instrum. 75(), 2004
A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time.
Cruickshank PA, Bolton DR, Robertson DA, Hunter RI, Wylde RJ, Smith GM., Rev Sci Instrum 80(10), 2009
PMID: 19895049


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 27788378
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche