Carbon Nanomembranes

Turchanin A, Gölzhäuser A (2016)
ADVANCED MATERIALS 28(29): 6075-6103.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Carbon nanomembranes (CNMs) are synthetic 2D carbon sheets with tailored physical or chemical properties. These depend on the structure, molecular composition, and surroundings on either side. Due to their molecular thickness, they can be regarded as "interfaces without bulk" separating regions of different gaseous, liquid, or solid components and controlling the materials exchange between them. Here, a universal scheme for the fabrication of 1 nm-thick, mechanically stable, functional CNMs is presented. CNMs can be further modified, for example perforated by ion bombardment or chemically functionalized by the binding of other molecules onto the surfaces. The underlying physical and chemical mechanisms are described, and examples are presented for the engineering of complex surface architectures, e.g., nanopatterns of proteins, fluorescent dyes, or polymer brushes. A simple transfer procedure allows CNMs to be placed on various support structures, which makes them available for diverse applications: supports for electron and X-ray microscopy, nanolithography, nanosieves, Janus nanomembranes, polymer carpets, complex layered structures, functionalization of graphene, novel nanoelectronic and nanomechanical devices. To close, the potential of CNMs in filtration and sensorics is discussed. Based on tests for the separation of gas molecules, it is argued that ballistic membranes may play a prominent role in future efforts of materials separation.
Erscheinungsjahr
2016
Zeitschriftentitel
ADVANCED MATERIALS
Band
28
Ausgabe
29
Seite(n)
6075-6103
ISSN
0935-9648
eISSN
1521-4095
Page URI
https://pub.uni-bielefeld.de/record/2905965

Zitieren

Turchanin A, Gölzhäuser A. Carbon Nanomembranes. ADVANCED MATERIALS. 2016;28(29):6075-6103.
Turchanin, A., & Gölzhäuser, A. (2016). Carbon Nanomembranes. ADVANCED MATERIALS, 28(29), 6075-6103. doi:10.1002/adma.201506058
Turchanin, Andrey, and Gölzhäuser, Armin. 2016. “Carbon Nanomembranes”. ADVANCED MATERIALS 28 (29): 6075-6103.
Turchanin, A., and Gölzhäuser, A. (2016). Carbon Nanomembranes. ADVANCED MATERIALS 28, 6075-6103.
Turchanin, A., & Gölzhäuser, A., 2016. Carbon Nanomembranes. ADVANCED MATERIALS, 28(29), p 6075-6103.
A. Turchanin and A. Gölzhäuser, “Carbon Nanomembranes”, ADVANCED MATERIALS, vol. 28, 2016, pp. 6075-6103.
Turchanin, A., Gölzhäuser, A.: Carbon Nanomembranes. ADVANCED MATERIALS. 28, 6075-6103 (2016).
Turchanin, Andrey, and Gölzhäuser, Armin. “Carbon Nanomembranes”. ADVANCED MATERIALS 28.29 (2016): 6075-6103.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Towards Macroscopic Crystalline 2D Polymers.
Feng X, Schlüter AD., Angew Chem Int Ed Engl 57(42), 2018
PMID: 29845730
Photofunctionality in Porphyrin-Hybridized Bis(dipyrrinato)zinc(II) Complex Micro- and Nanosheets.
Sakamoto R, Yagi T, Hoshiko K, Kusaka S, Matsuoka R, Maeda H, Liu Z, Liu Q, Wong WY, Nishihara H., Angew Chem Int Ed Engl 56(13), 2017
PMID: 28240405
Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy.
Chamberlain TW, Biskupek J, Skowron ST, Markevich AV, Kurasch S, Reimer O, Walker KE, Rance GA, Feng X, Müllen K, Turchanin A, Lebedeva MA, Majouga AG, Nenajdenko VG, Kaiser U, Besley E, Khlobystov AN., ACS Nano 11(3), 2017
PMID: 28191929
Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices.
Noever SJ, Eder M, Del Giudice F, Martin J, Werkmeister FX, Hallwig S, Fischer S, Seeck O, Weber NE, Liewald C, Keilmann F, Turchanin A, Nickel B., Adv Mater 29(26), 2017
PMID: 28480616
Synthesis, structure and applications of graphene-based 2D heterostructures.
Solís-Fernández P, Bissett M, Ago H., Chem Soc Rev 46(15), 2017
PMID: 28691726
Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes.
Koch S, Kaiser CD, Penner P, Barclay M, Frommeyer L, Emmrich D, Stohmann P, Abu-Husein T, Terfort A, Fairbrother DH, Ingólfsson O, Gölzhäuser A., Beilstein J Nanotechnol 8(), 2017
PMID: 29259871

157 References

Daten bereitgestellt von Europe PubMed Central.


Langmuir, J. Franklin Institute 218(), 1934

Blodgett, J. Am. Chem. Soc. 56(), 1934

Polymeropoulos, J. Chem. Phys. 69(), 1978

Sagiv, J. Am. Chem. Soc. 102(), 1980

Nuzzo, J. Am. Chem. Soc. 105(), 1983

Ulman, 1991

Dubois, Annu. Rev. Phys. Chem. 43(), 1992

Finklea, 1996

Ulman, 1998

Schreiber, Prog. Surf. Sci. 65(), 2000
Self-assembled monolayers of thiolates on metals as a form of nanotechnology.
Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM., Chem. Rev. 105(4), 2005
PMID: 15826011

Zharnikov, J. Phys.: Condens. Matter 13(), 2001

Vericat, J. Phys.: Condensed Matter 18(), 2006

Kind, Prog. Surf. Sci. 84(), 2009

Smith, Prog. Surf. Sci. 75(), 2004
Scanning probe lithography using self-assembled monolayers.
Kramer S, Fuierer RR, Gorman CB., Chem. Rev. 103(11), 2003
PMID: 14611266
Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system.
Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC., Chem Soc Rev 39(5), 2010
PMID: 20419220

Wilbur, Adv. Mater. 6(), 1994
Fabrication of submicrometer features on curved substrates by microcontact printing.
Jackman RJ, Wilbur JL, Whitesides GM., Science 269(5224), 1995
PMID: 7624795

Wilbur, Nanotechnology 7(), 1996
Unconventional Methods for Fabricating and Patterning Nanostructures.
Xia Y, Rogers JA, Paul KE, Whitesides GM., Chem. Rev. 99(7), 1999
PMID: 11849012
Patterning proteins and cells using soft lithography.
Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM., Biomaterials 20(23-24), 1999
PMID: 10614942

Decher, Science 277(), 1997

Decher, 2012
A two-dimensional polymer prepared by organic synthesis.
Kissel P, Erni R, Schweizer WB, Rossell MD, King BT, Bauer T, Gotzinger S, Schluter AD, Sakamoto J., Nat Chem 4(4), 2012
PMID: 22437713
Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator.
Kambe T, Sakamoto R, Kusamoto T, Pal T, Fukui N, Hoshiko K, Shimojima T, Wang Z, Hirahara T, Ishizaka K, Hasegawa S, Liu F, Nishihara H., J. Am. Chem. Soc. 136(41), 2014
PMID: 25251306
Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature.
Schrettl S, Stefaniu C, Schwieger C, Pasche G, Oveisi E, Fontana Y, Fontcuberta i Morral A, Reguera J, Petraglia R, Corminboeuf C, Brezesinski G, Frauenrath H., Nat Chem 6(6), 2014
PMID: 24848231
Electric field effect in atomically thin carbon films.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA., Science 306(5696), 2004
PMID: 15499015
The rise of graphene.
Geim AK, Novoselov KS., Nat Mater 6(3), 2007
PMID: 17330084

Eck, Adv. Mater. 17(), 2005
Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems.
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Boggild P, Borini S, Koppens FH, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhanen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SR, Tannock Q, Lofwander T, Kinaret J., Nanoscale 7(11), 2015
PMID: 25707682
Covalent organic frameworks (COFs): from design to applications.
Ding SY, Wang W., Chem Soc Rev 42(2), 2013
PMID: 23060270

Gliemann, Mater. Today 15(), 2012
MOF-based electronic and opto-electronic devices.
Stavila V, Talin AA, Allendorf MD., Chem Soc Rev 43(16), 2014
PMID: 24802763
Molecular architectonic on metal surfaces.
Barth JV., Annu Rev Phys Chem 58(), 2007
PMID: 17430091
Homo-coupling of terminal alkynes on a noble metal surface.
Zhang YQ, Kepcija N, Kleinschrodt M, Diller K, Fischer S, Papageorgiou AC, Allegretti F, Bjork J, Klyatskaya S, Klappenberger F, Ruben M, Barth JV., Nat Commun 3(), 2012
PMID: 23250416
Synthesis of linked carbon monolayers: films, balloons, tubes, and pleated sheets.
Schultz MJ, Zhang X, Unarunotai S, Khang DY, Cao Q, Wang C, Lei C, MacLaren S, Soares JA, Petrov I, Moore JS, Rogers JA., Proc. Natl. Acad. Sci. U.S.A. 105(21), 2008
PMID: 18508969

Preuss, ACS Macro Lett. 3(), 2014
Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography.
Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Golzhauser A., Small 3(12), 2007
PMID: 17960749

Geyer, Appl. Phys. Lett. 75(), 1999

Turchanin, Prog. Surf. Sci. 87(), 2012
A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.
Angelova P, Vieker H, Weber NE, Matei D, Reimer O, Meier I, Kurasch S, Biskupek J, Lorbach D, Wunderlich K, Chen L, Terfort A, Klapper M, Mullen K, Kaiser U, Golzhauser A, Turchanin A., ACS Nano 7(8), 2013
PMID: 23802686

Eck, Adv. Mater. 12(), 2000
Janus nanomembranes: a generic platform for chemistry in two dimensions.
Zheng Z, Nottbohm CT, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M, Golzhauser A., Angew. Chem. Int. Ed. Engl. 49(45), 2010
PMID: 20886488
Polymer carpets.
Amin I, Steenackers M, Zhang N, Beyer A, Zhang X, Pirzer T, Hugel T, Jordan R, Golzhauser A., Small 6(15), 2010
PMID: 20635346
Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials.
Zheng Z, Zhang X, Neumann C, Emmrich D, Winter A, Vieker H, Liu W, Lensen M, Golzhauser A, Turchanin A., Nanoscale 7(32), 2015
PMID: 26203897

Turchanin, Adv. Mater. 20(), 2008

Turchanin, Appl. Phys. Lett. 90(), 2007
Molecular mechanisms of electron-induced cross-linking in aromatic SAMs.
Turchanin A, Kafer D, El-Desawy M, Woll C, Witte G, Golzhauser A., Langmuir 25(13), 2009
PMID: 19485375

Turchanin, Adv. Mater. 21(), 2009

Chesneau, J. Phys. Chem. C 115(), 2011
Low-energy electron induced resonant loss of aromaticity: consequences on cross-linking in terphenylthiol SAMs.
Amiaud L, Houplin J, Bourdier M, Humblot V, Azria R, Pradier CM, Lafosse A., Phys Chem Chem Phys 16(3), 2013
PMID: 24287704
Functional single-layer graphene sheets from aromatic monolayers.
Matei DG, Weber NE, Kurasch S, Wundrack S, Woszczyna M, Grothe M, Weimann T, Ahlers F, Stosch R, Kaiser U, Turchanin A., Adv. Mater. Weinheim 25(30), 2013
PMID: 23716462
Classical molecular dynamics investigations of biphenyl-based carbon nanomembranes.
Mrugalla A, Schnack J., Beilstein J Nanotechnol 5(), 2014
PMID: 24991523

Zharnikov, Phys. Chem. Chem. Phys. 1(), 1999

Zharnikov, J. Vac. Sci. Technol. B 20(), 2002
Fabrication of carbon nanomembranes by helium ion beam lithography.
Zhang X, Vieker H, Beyer A, Golzhauser A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605285

Beyer, J. Vac. Sci. Technol. B 28(), 2010
Mechanical characterization of carbon nanomembranes from self-assembled monolayers.
Zhang X, Beyer A, Golzhauser A., Beilstein J Nanotechnol 2(), 2011
PMID: 22259767
Tailoring the mechanics of ultrathin carbon nanomembranes by molecular design.
Zhang X, Neumann C, Angelova P, Beyer A, Golzhauser A., Langmuir 30(27), 2014
PMID: 24946144
Measurement of the elastic properties and intrinsic strength of monolayer graphene.
Lee C, Wei X, Kysar JW, Hone J., Science 321(5887), 2008
PMID: 18635798

Martins, Eur. Phys. J.: Appl. Phys. 45(), 2009

Penner, J. Phys. Chem. C 118(), 2014
Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers.
Chiechi RC, Weiss EA, Dickey MD, Whitesides GM., Angew. Chem. Int. Ed. Engl. 47(1), 2008
PMID: 18038438

Hamoudi, J. Mater. Chem. C 3(), 2015
Electron tunneling through ultrathin boron nitride crystalline barriers.
Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Katsnelson MI, Eaves L, Morozov SV, Mayorov AS, Peres NM, Neto AH, Leist J, Geim AK, Ponomarenko LA, Novoselov KS., Nano Lett. 12(3), 2012
PMID: 22380756
Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces.
Biebricher A, Paul A, Tinnefeld P, Golzhauser A, Sauer M., J. Biotechnol. 112(1-2), 2004
PMID: 15288945
Fully cross-linked and chemically patterned self-assembled monolayers.
Beyer A, Godt A, Amin I, Nottbohm CT, Schmidt C, Zhao J, Golzhauser A., Phys Chem Chem Phys 10(48), 2008
PMID: 19060967
High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies.
Tinazli A, Tang J, Valiokas R, Picuric S, Lata S, Piehler J, Liedberg B, Tampe R., Chemistry 11(18), 2005
PMID: 15991207

Hochuli, 1990
Patterned polymer carpets.
Amin I, Steenackers M, Zhang N, Schubel R, Beyer A, Golzhauser A, Jordan R., Small 7(5), 2010
PMID: 21370466
Surface-initiated polymerization on self-assembled monolayers: amplification of patterns on the micrometer and nanometer scale.
Schmelmer U, Jordan R, Geyer W, Eck W, Golzhauser A, Grunze M, Ulman A., Angew. Chem. Int. Ed. Engl. 42(5), 2003
PMID: 12569490

Steenackers, Adv. Mater. 21(), 2009
All-carbon vertical van der Waals heterostructures: non-destructive functionalization of graphene for electronic applications.
Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A., Adv. Mater. Weinheim 26(28), 2014
PMID: 24862387

Zhang, Appl. Phys. Lett. 106(), 2015
Freely suspended nanocomposite membranes as highly sensitive sensors.
Jiang C, Markutsya S, Pikus Y, Tsukruk VV., Nat Mater 3(10), 2004
PMID: 15448680
Two-dimensional polymers: just a dream of synthetic chemists?
Sakamoto J, van Heijst J, Lukin O, Schluter AD., Angew. Chem. Int. Ed. Engl. 48(6), 2009
PMID: 19130514
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Golzhauser A., Small 5(23), 2009
PMID: 19787678
Carbon nanomembranes (CNMs) supported by polymer: mechanics and gas permeation.
Ai M, Shishatskiy S, Wind J, Zhang X, Nottbohm CT, Mellech N, Winter A, Vieker H, Qiu J, Dietz KJ, Golzhauser A, Beyer A., Adv. Mater. Weinheim 26(21), 2014
PMID: 24535992

Barnes, Nature 372(), 1994
Translating biomolecular recognition into nanomechanics.
Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Guntherodt H, Gerber C, Gimzewski JK., Science 288(5464), 2000
PMID: 10764640

Nottbohm, Z. Phys. Chem. 222(), 2008
Fluctuation driven transport and models of molecular motors and pumps.
Astumian RD, Derenyi I., Eur. Biophys. J. 27(5), 1998
PMID: 9760729
Fluctuation-driven molecular transport through an asymmetric membrane channel.
Kosztin I, Schulten K., Phys. Rev. Lett. 93(23), 2004
PMID: 15601207
Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes.
Majumder M, Chopra N, Hinds BJ., J. Am. Chem. Soc. 127(25), 2005
PMID: 15969584
Asymmetric end-functionalization of multi-walled carbon nanotubes.
Lee KM, Li L, Dai L., J. Am. Chem. Soc. 127(12), 2005
PMID: 15783165

Ritter, Appl. Phys. Lett. 102(), 2013

Wilhelm, 2D Mater. 2(), 2015
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Golzhauser A., Small 5(23), 2009
PMID: 19787678
Holey nanosheets by patterning with UV/ozone.
Nottbohm CT, Wiegmann S, Beyer A, Golzhauser A., Phys Chem Chem Phys 12(17), 2010
PMID: 20407702
An atomically thin matter-wave beamsplitter.
Brand C, Sclafani M, Knobloch C, Lilach Y, Juffmann T, Kotakoski J, Mangler C, Winter A, Turchanin A, Meyer J, Cheshnovsky O, Arndt M., Nat Nanotechnol 10(10), 2015
PMID: 26301904

Aumayr, J. Phys.: Condens. Matter 23(), 2011
Phase diagram for nanostructuring CaF(2) surfaces by slow highly charged ions.
El-Said AS, Wilhelm RA, Heller R, Facsko S, Lemell C, Wachter G, Burgdorfer J, Ritter R, Aumayr F., Phys. Rev. Lett. 109(11), 2012
PMID: 23005676
Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
Striemer CC, Gaborski TR, McGrath JL, Fauchet PM., Nature 445(7129), 2007
PMID: 17301789
Nanopore analytics: sensing of single molecules.
Howorka S, Siwy Z., Chem Soc Rev 38(8), 2009
PMID: 19623355
Nanopores as protein sensors.
Howorka S, Siwy ZS., Nat. Biotechnol. 30(6), 2012
PMID: 22678388

Bohr, 1949

Auzelyte, J. Micro/Nanolithogr. MEMS MOEMS 8(), 2009
Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport.
Turchanin A, Weber D, Buenfeld M, Kisielowski C, Fistul MV, Efetov KB, Weimann T, Stosch R, Mayer J, Golzhauser A., ACS Nano 5(5), 2011
PMID: 21491948

Rhinow, J. Phys. Chem. C 116(), 2012
Raman spectroscopy as a versatile tool for studying the properties of graphene.
Ferrari AC, Basko DM., Nat Nanotechnol 8(4), 2013
PMID: 23552117
Grain boundary mapping in polycrystalline graphene.
Kim K, Lee Z, Regan W, Kisielowski C, Crommie MF, Zettl A., ACS Nano 5(3), 2011
PMID: 21280616
Direct imaging of rotational stacking faults in few layer graphene.
Warner JH, Rummeli MH, Gemming T, Buchner B, Briggs GA., Nano Lett. 9(1), 2009
PMID: 19072722
From point defects in graphene to two-dimensional amorphous carbon.
Kotakoski J, Krasheninnikov AV, Kaiser U, Meyer JC., Phys. Rev. Lett. 106(10), 2011
PMID: 21469806

Turchanin, Adv. Mater. 21(), 2009

Shklovskii, 1984

Vekilov, Phys. Lett. A 338(), 2005

Gantmacher, 2005
Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures.
Jung I, Dikin DA, Piner RD, Ruoff RS., Nano Lett. 8(12), 2008
PMID: 19367929

Eda, J. Phys. Chem. C 113(), 2009
Graphene oxide as a chemically tunable platform for optical applications.
Loh KP, Bao Q, Eda G, Chhowalla M., Nat Chem 2(12), 2010
PMID: 21107364
Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction.
Parvez K, Yang S, Hernandez Y, Winter A, Turchanin A, Feng X, Mullen K., ACS Nano 6(11), 2012
PMID: 23050839
Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors.
Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Mullen K., Adv. Mater. Weinheim 24(37), 2012
PMID: 22807002
Raman spectrum of graphene and graphene layers.
Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK., Phys. Rev. Lett. 97(18), 2006
PMID: 17155573

Meyer, Solid State Commun. 143(), 2007

Nottbohm, J. Vac. Sci. Technol. B 27(), 2009
Direct Growth of Patterned Graphene.
Weber NE, Wundrack S, Stosch R, Turchanin A., Small 12(11), 2016
PMID: 26765943
Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst.
Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh KP., ACS Nano 5(12), 2011
PMID: 22034835
Clean-lifting transfer of large-area residual-free graphene films.
Wang DY, Huang IS, Ho PH, Li SS, Yeh YC, Wang DW, Chen WL, Lee YY, Chang YM, Chen CC, Liang CT, Chen CW., Adv. Mater. Weinheim 25(32), 2013
PMID: 23813552

Lercel, J. Vac. Sci. Technol. B 12(), 1994

Kado, Adv. Mater. 17(), 2005
Van der Waals heterostructures.
Geim AK, Grigorieva IV., Nature 499(7459), 2013
PMID: 23887427

Ponomarenko, Nat. Phys. 7(), 2011
Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices.
Haigh SJ, Gholinia A, Jalil R, Romani S, Britnell L, Elias DC, Novoselov KS, Ponomarenko LA, Geim AK, Gorbachev R., Nat Mater 11(9), 2012
PMID: 22842512

Blake, Appl. Phys. Lett. 91(), 2007
Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering.
Voiry D, Goswami A, Kappera R, e Silva Cde C, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla M., Nat Chem 7(1), 2014
PMID: 25515889
Improving the stability and optical properties of germanane via one-step covalent methyl-termination.
Jiang S, Butler S, Bianco E, Restrepo OD, Windl W, Goldberger JE., Nat Commun 5(), 2014
PMID: 24566761

Mao, Prog. Surf. Sci. 88(), 2013
Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles.
Nottbohm CT, Beyer A, Sologubenko AS, Ennen I, Hutten A, Rosner H, Eck W, Mayer J, Golzhauser A., Ultramicroscopy 108(9), 2008
PMID: 18406532
Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes.
Rhinow D, Buenfeld M, Weber NE, Beyer A, Golzhauser A, Kuhlbrandt W, Hampp N, Turchanin A., Ultramicroscopy 111(5), 2011
PMID: 21329648

Rhinow, Appl. Phys. Lett. 99(), 2011
Quantitative high-resolution transmission electron microscopy of single atoms.
Gamm B, Blank H, Popescu R, Schneider R, Beyer A, Golzhauser A, Gerthsen D., Microsc. Microanal. 18(1), 2011
PMID: 22153521
X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH.
Gorniak T, Heine R, Mancuso AP, Staier F, Christophis C, Pettitt ME, Sakdinawat A, Treusch R, Guerassimova N, Feldhaus J, Gutt C, Grubel G, Eisebitt S, Beyer A, Golzhauser A, Weckert E, Grunze M, Vartanyants IA, Rosenhahn A., Opt Express 19(12), 2011
PMID: 21716334
Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Golzhauser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423

Kaltenpoth, J. Vac. Sci. Technol. B 20(), 2002
Fabrication, optimization, and use of graphene field effect sensors.
Stine R, Mulvaney SP, Robinson JT, Tamanaha CR, Sheehan PE., Anal. Chem. 85(2), 2012
PMID: 23234380
Graphene-based electrochemical sensors.
Wu S, He Q, Tan C, Wang Y, Zhang H., Small 9(8), 2013
PMID: 23494883

Kuila, Prog. Mater. Sci. 57(), 2012
The chemistry of graphene oxide.
Dreyer DR, Park S, Bielawski CW, Ruoff RS., Chem Soc Rev 39(1), 2009
PMID: 20023850
Polymer brushes on graphene.
Steenackers M, Gigler AM, Zhang N, Deubel F, Seifert M, Hess LH, Lim CH, Loh KP, Garrido JA, Jordan R, Stutzmann M, Sharp ID., J. Am. Chem. Soc. 133(27), 2011
PMID: 21639111
Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups.
Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, de Heer WA, Haddon RC., J. Am. Chem. Soc. 131(4), 2009
PMID: 19173656
Large-area synthesis of high-quality and uniform graphene films on copper foils.
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS., Science 324(5932), 2009
PMID: 19423775

Cooper, Nano Lett. 4(), 2004
Biological and chemical sensors based on graphene materials.
Liu Y, Dong X, Chen P., Chem Soc Rev 41(6), 2011
PMID: 22143223
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27281234
PubMed | Europe PMC

Suchen in

Google Scholar