Averaging of nuclear modulation artefacts in RIDME experiments

Keller K, Doll A, Qi M, Godt A, Jeschke G, Yulikov M (2016)
Journal of Magnetic Resonance 272: 108-113.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Keller, Katharina; Doll, Andrin; Qi, MianUniBi ; Godt, AdelheidUniBi; Jeschke, Gunnar; Yulikov, Maxim
Abstract / Bemerkung
Abstract The presence of artefacts due to Electron Spin Echo Envelope Modulation (ESEEM) complicates the analysis of dipolar evolution data in Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiments. Here we demonstrate that averaging over the two delay times in the refocused \{RIDME\} experiment allows for nearly quantitative removal of the \{ESEEM\} artefacts, resulting in potentially much better performance than the so far used methods. The analytical equations are presented and analyzed for the case of electron and nuclear spins S = 1 / 2 , I = 1 / 2 . The presented analysis is also relevant for Double Electron Electron Resonance (DEER) and Chirp-Induced Dipolar Modulation Enhancement (CIDME) techniques. The applicability of the \{ESEEM\} averaging approach is demonstrated on a Gd(III)-Gd(III) rigid ruler compound in deuterated frozen solution at Q band (35 GHz).
Stichworte
Gadolinium
Erscheinungsjahr
2016
Zeitschriftentitel
Journal of Magnetic Resonance
Band
272
Seite(n)
108-113
ISBN
1090-7807
ISSN
1090-7807
Page URI
https://pub.uni-bielefeld.de/record/2905849

Zitieren

Keller K, Doll A, Qi M, Godt A, Jeschke G, Yulikov M. Averaging of nuclear modulation artefacts in RIDME experiments. Journal of Magnetic Resonance. 2016;272:108-113.
Keller, K., Doll, A., Qi, M., Godt, A., Jeschke, G., & Yulikov, M. (2016). Averaging of nuclear modulation artefacts in RIDME experiments. Journal of Magnetic Resonance, 272, 108-113. doi:10.1016/j.jmr.2016.09.016
Keller, Katharina, Doll, Andrin, Qi, Mian, Godt, Adelheid, Jeschke, Gunnar, and Yulikov, Maxim. 2016. “Averaging of nuclear modulation artefacts in RIDME experiments”. Journal of Magnetic Resonance 272: 108-113.
Keller, K., Doll, A., Qi, M., Godt, A., Jeschke, G., and Yulikov, M. (2016). Averaging of nuclear modulation artefacts in RIDME experiments. Journal of Magnetic Resonance 272, 108-113.
Keller, K., et al., 2016. Averaging of nuclear modulation artefacts in RIDME experiments. Journal of Magnetic Resonance, 272, p 108-113.
K. Keller, et al., “Averaging of nuclear modulation artefacts in RIDME experiments”, Journal of Magnetic Resonance, vol. 272, 2016, pp. 108-113.
Keller, K., Doll, A., Qi, M., Godt, A., Jeschke, G., Yulikov, M.: Averaging of nuclear modulation artefacts in RIDME experiments. Journal of Magnetic Resonance. 272, 108-113 (2016).
Keller, Katharina, Doll, Andrin, Qi, Mian, Godt, Adelheid, Jeschke, Gunnar, and Yulikov, Maxim. “Averaging of nuclear modulation artefacts in RIDME experiments”. Journal of Magnetic Resonance 272 (2016): 108-113.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Orientation selection in high-field RIDME and PELDOR experiments involving low-spin CoII ions.
Giannoulis A, Motion CL, Oranges M, Bühl M, Smith GM, Bode BE., Phys Chem Chem Phys 20(4), 2018
PMID: 29313041
Room-temperature distance measurements using RIDME and the orthogonal spin labels trityl/nitroxide.
Kuzhelev AA, Krumkacheva OA, Shevelev GY, Yulikov M, Fedin MV, Bagryanskaya EG., Phys Chem Chem Phys 20(15), 2018
PMID: 29594278
Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels.
Keller K, Mertens V, Qi M, Nalepa AI, Godt A, Savitsky A, Jeschke G, Yulikov M., Phys Chem Chem Phys 19(27), 2017
PMID: 28660955
CIDME: Short distances measured with long chirp pulses.
Doll A, Qi M, Godt A, Jeschke G., J Magn Reson 273(), 2016
PMID: 27788378

36 References

Daten bereitgestellt von Europe PubMed Central.

Long-range distance determinations in biomacromolecules by EPR spectroscopy
Schiemann, Q. Rev. Biophys. 40(01), 2007
Spin labeling EPR
Klare, Photosynth. Res. 102(2), 2009
Site-directed spin labeling of membrane proteins.
Bordignon E., Top Curr Chem 321(), 2012
PMID: 21898205
Structure and dynamics of nucleic acids.
Krstic I, Endeward B, Margraf D, Marko A, Prisner TF., Top Curr Chem 321(), 2012
PMID: 22160388
DEER distance measurements on proteins.
Jeschke G., Annu Rev Phys Chem 63(), 2012
PMID: 22404592
Technological advances in site-directed spin labeling of proteins.
Hubbell WL, Lopez CJ, Altenbach C, Yang Z., Curr. Opin. Struct. Biol. 23(5), 2013
PMID: 23850140
Recent advances and applications of site-directed spin labeling.
Fanucci GE, Cafiso DS., Curr. Opin. Struct. Biol. 16(5), 2006
PMID: 16949813
Dead-time free measurement of dipole-dipole interactions between electron spins.
Pannier M, Veit S, Godt A, Jeschke G, Spiess HW., J. Magn. Reson. 142(2), 2000
PMID: 10648151
Direct conversion of EPR dipolar time evolution data to distance distributions.
Jeschke G, Koch A, Jonas U, Godt A., J. Magn. Reson. 155(1), 2002
PMID: 11945035
On Cu(II)-Cu(II) distance measurements using pulsed electron electron double resonance.
Yang Z, Becker J, Saxena S., J. Magn. Reson. 188(2), 2007
PMID: 17825593
Paramagnetic metal ions in pulsed ESR distance distribution measurements.
Ji M, Ruthstein S, Saxena S., Acc. Chem. Res. 47(2), 2013
PMID: 24289139
Broadband inversion PELDOR spectroscopy with partially adiabatic shaped pulses.
Spindler PE, Glaser SJ, Skinner TE, Prisner TF., Angew. Chem. Int. Ed. Engl. 52(12), 2013
PMID: 23424088
Sensitivity enhancement by population transfer in Gd(III) spin labels.
Doll A, Qi M, Pribitzer S, Wili N, Yulikov M, Godt A, Jeschke G., Phys Chem Chem Phys 17(11), 2015
PMID: 25697259
Gd3+ complexes as potential spin labels for high field pulsed EPR distance measurements.
Raitsimring AM, Gunanathan C, Potapov A, Efremenko I, Martin JM, Milstein D, Goldfarb D., J. Am. Chem. Soc. 129(46), 2007
PMID: 17963387
Double electron-electron resonance measured between Gd3+ ions and nitroxide radicals
Lueders, J. Phys. Chem. Lett. 2(6), 2011
Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd(3+)-DTPA chelate complexes.
Yulikov M, Lueders P, Warsi MF, Chechik V, Jeschke G., Phys Chem Chem Phys 14(30), 2012
PMID: 22743649
Conformational cycle of the vitamin B12 ABC importer in liposomes detected by double electron-electron resonance (DEER).
Joseph B, Korkhov VM, Yulikov M, Jeschke G, Bordignon E., J. Biol. Chem. 289(6), 2013
PMID: 24362024
Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy.
Goldfarb D., Phys Chem Chem Phys 16(21), 2014
PMID: 24429839
Chapter 1 Spectroscopically orthogonal spin labels and distance measurements in biomolecules
Yulikov, Electron. Paramag. Reson. 24(), 2015
Gd(III)-PyMTA label is suitable for in-cell EPR.
Qi M, Gross A, Jeschke G, Godt A, Drescher M., J. Am. Chem. Soc. 136(43), 2014
PMID: 25325832
Probing protein conformation in cells by EPR distance measurements using Gd3+ spin labeling.
Martorana A, Bellapadrona G, Feintuch A, Di Gregorio E, Aime S, Goldfarb D., J. Am. Chem. Soc. 136(38), 2014
PMID: 25163412
Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.
Doll A, Pribitzer S, Tschaggelar R, Jeschke G., J. Magn. Reson. 230(), 2013
PMID: 23434533
Gd(III)-Gd(III) distance measurements with chirp pump pulses.
Doll A, Qi M, Wili N, Pribitzer S, Godt A, Jeschke G., J. Magn. Reson. 259(), 2015
PMID: 26340436
Electron dipole-dipole interaction in ESEEM of nitroxide biradicals
Kulik, Chem. Phys. Lett. 343(3-4), 2001
RIDME Spectroscopy with Gd(III) Centers.
Razzaghi S, Qi M, Nalepa AI, Godt A, Jeschke G, Savitsky A, Yulikov M., J Phys Chem Lett 5(22), 2014
PMID: 26276479
Comparison of PELDOR and RIDME for Distance Measurements between Nitroxides and Low-Spin Fe(III) Ions.
Abdullin D, Duthie F, Meyer A, Muller ES, Hagelueken G, Schiemann O., J Phys Chem B 119(43), 2015
PMID: 26000868
Chapter ten - mapping the structure of metalloproteins with RIDME
Astashkin, 2015

AUTHOR UNKNOWN, 0
Gd(III)-Gd(III) EPR distance measurements--the range of accessible distances and the impact of zero field splitting.
Dalaloyan A, Qi M, Ruthstein S, Vega S, Godt A, Feintuch A, Goldfarb D., Phys Chem Chem Phys 17(28), 2015
PMID: 26108866

Schweiger, 2001

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27684788
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche