Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production

Irla M, Heggeset TM, Naerdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF (2016)
Frontiers in Microbiology 7: 1481.

Download
OA 2.28 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor/in
; ; ; ; ; ; ;
Abstract / Bemerkung
Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Microbiology
Band
7
Art.-Nr.
1481
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Irla M, Heggeset TM, Naerdal I, et al. Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Frontiers in Microbiology. 2016;7: 1481.
Irla, M., Heggeset, T. M., Naerdal, I., Paul, L., Haugen, T., Le, S. B., Brautaset, T., et al. (2016). Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Frontiers in Microbiology, 7, 1481. doi:10.3389/fmicb.2016.01481
Irla, M., Heggeset, T. M., Naerdal, I., Paul, L., Haugen, T., Le, S. B., Brautaset, T., and Wendisch, V. F. (2016). Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Frontiers in Microbiology 7:1481.
Irla, M., et al., 2016. Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Frontiers in Microbiology, 7: 1481.
M. Irla, et al., “Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production”, Frontiers in Microbiology, vol. 7, 2016, : 1481.
Irla, M., Heggeset, T.M., Naerdal, I., Paul, L., Haugen, T., Le, S.B., Brautaset, T., Wendisch, V.F.: Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Frontiers in Microbiology. 7, : 1481 (2016).
Irla, Marta, Heggeset, Tonje M., Naerdal, Ingemar, Paul, Lidia, Haugen, Tone, Le, Simone B., Brautaset, Trygve, and Wendisch, Volker F. “Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production”. Frontiers in Microbiology 7 (2016): 1481.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:39Z

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

CopySwitch-in vivo Optimization of Gene Copy Numbers for Heterologous Gene Expression in Bacillus subtilis.
Nadler F, Bracharz F, Kabisch J., Front Bioeng Biotechnol 6(), 2018
PMID: 30671432
Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae.
Drejer EB, Hakvåg S, Irla M, Brautaset T., Microorganisms 6(2), 2018
PMID: 29748477
l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.
Nærdal I, Netzer R, Irla M, Krog A, Heggeset TMB, Wendisch VF, Brautaset T., J Biotechnol 244(), 2017
PMID: 28163092

83 References

Daten bereitgestellt von Europe PubMed Central.

Plasmid maintenance in Bacillus subtilis recombination-deficient mutants.
Alonso JC, Viret JF, Tailor RH., Mol. Gen. Genet. 208(1-2), 1987
PMID: 3112524
Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria.
Arfman N, Dijkhuizen L, Kirchhof G, Ludwig W, Schleifer KH, Bulygina ES, Chumakov KM, Govorukhina NI, Trotsenko YA, White D., Int. J. Syst. Bacteriol. 42(3), 1992
PMID: 1380290
Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Degnes KF, Netzer R, Naerdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 87(3), 2010
PMID: 20372887
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset T, Jakobsen M OM, Flickinger MC, Valla S, Ellingsen TE., J. Bacteriol. 186(5), 2004
PMID: 14973041
Stability function in the Bacillus subtilis plasmid pTA 1060.
Bron S, Bosma P, van Belkum M, Luxen E., Plasmid 18(1), 1987
PMID: 2827207
Molecular cloning and functional expression in lactobacillus plantarum 80 of xylT, encoding the D-xylose-H+ symporter of Lactobacillus brevis.
Chaillou S, Bor YC, Batt CA, Postma PW, Pouwels PH., Appl. Environ. Microbiol. 64(12), 1998
PMID: 9835554
Green fluorescent protein as a marker for gene expression.
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC., Science 263(5148), 1994
PMID: 8303295
Improved green fluorescent protein by molecular evolution using DNA shuffling.
Crameri A, Whitehorn EA, Tate E, Stemmer WP., Nat. Biotechnol. 14(3), 1996
PMID: 9630892
Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph.
Cue D, Lam H, Dillingham RL, Hanson RS, Flickinger MC., Appl. Environ. Microbiol. 63(4), 1997
PMID: 9097439
High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter.
D'Urzo N, Martinelli M, Nenci C, Brettoni C, Telford JL, Maione D., Microb. Cell Fact. 12(), 2013
PMID: 23374160
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Plasmid copy number and plasmid stability.
Friehs K., Adv. Biochem. Eng. Biotechnol. 86(), 2004
PMID: 15088763
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Production of L-lysine and some other amino acids by mutants of B. methanolicus
Hanson R., Dillingham R., Olson P., Lee G., Cue D., Schendel F.., 1996
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.
Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 78(15), 2012
PMID: 22610424
Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors.
Heravi KM, Wenzel M, Altenbuchner J., Microb. Cell Fact. 10(), 2011
PMID: 22014119
Calcium-dependent bacteriophage DNA infection.
Mandel M, Higa A., J. Mol. Biol. 53(1), 1970
PMID: 4922220
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157

AUTHOR UNKNOWN, 2016
Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph.
Irla M, Neshat A, Winkler A, Albersmeier A, Heggeset TM, Brautaset T, Kalinowski J, Wendisch VF, Ruckert C., J. Biotechnol. 188(), 2014
PMID: 25152427
Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.
Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE., Appl. Environ. Microbiol. 75(3), 2008
PMID: 19060158
Rolling-circle replication of bacterial plasmids.
Khan SA., Microbiol. Mol. Biol. Rev. 61(4), 1997
PMID: 9409148
DynaMet: a fully automated pipeline for dynamic LC-MS data.
Kiefer P, Schmitt U, Muller JE, Hartl J, Meyer F, Ryffel F, Vorholt JA., Anal. Chem. 87(19), 2015
PMID: 26366644
A xylose-inducible Bacillus subtilis integration vector and its application.
Kim L, Mogk A, Schumann W., Gene 181(1-2), 1996
PMID: 8973310
Genetic tool development for a new host for biotechnology, the thermotolerant bacterium Bacillus coagulans.
Kovacs AT, van Hartskamp M, Kuipers OP, van Kranenburg R., Appl. Environ. Microbiol. 76(12), 2010
PMID: 20400555
Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism.
Lokman BC, Leer RJ, van Sorge R, Pouwels PH., Mol. Gen. Genet. 245(1), 1994
PMID: 7845354
A xylose-inducible expression system for Lactococcus lactis.
Miyoshi A, Jamet E, Commissaire J, Renault P, Langella P, Azevedo V., FEMS Microbiol. Lett. 239(2), 2004
PMID: 15476967
Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.
Muller JE, Heggeset TM, Wendisch VF, Vorholt JA, Brautaset T., Appl. Microbiol. Biotechnol. 99(2), 2014
PMID: 25431011
Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.
Muller JE, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA., Proteomics 14(6), 2014
PMID: 24452867
Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains.
Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF., Microb Biotechnol 8(2), 2015
PMID: 25644214
Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability.
Nguyen HD, Nguyen QA, Ferreira RC, Ferreira LC, Tran LT, Schumann W., Plasmid 54(3), 2005
PMID: 16005967
Expression of recombinant green fluorescent protein in Bacillus methanolicus.
Nilasari D, Dover N, Rech S, Komives C., Biotechnol. Prog. 28(3), 2012
PMID: 22275315
T-Coffee: A novel method for fast and accurate multiple sequence alignment.
Notredame C, Higgins DG, Heringa J., J. Mol. Biol. 302(1), 2000
PMID: 10964570

Sambrook J., Russell D.., 2001
L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp.
Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS., Appl. Environ. Microbiol. 56(4), 1990
PMID: 2111119
Production of glutamate using wild type bacillus methanolicus
Schendel F., Dillingham R., Hanson R., Sano K., Matsui K.., 2000
Biotechnological production of polyamines by bacteria: recent achievements and future perspectives.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 91(1), 2011
PMID: 21552989
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Plasmid stability in Bacillus sphaericus 2362 during recycling in mosquito larvae.
Seyler RW Jr, Yousten AA, Burke WF Jr., J. Invertebr. Pathol. 58(3), 1991
PMID: 1787324
Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein.
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY., Nat. Biotechnol. 22(12), 2004
PMID: 15558047
The amylases of five streptomycetes.
SIMPSON FJ, McCOY E., Appl Microbiol 1(5), 1953
PMID: 13092847
Changes in intracellular composition in response to hyperosmotic stress of NaCl, sucrose or glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum.
Skjerdal O., Sletta H., Flenstad S., Josefsen K., Levine D., Ellingsen T.., 1996
Thermostability and superhelicity of plasmid DNA in Bacillus stearothermophilus.
Soutschek-Bauer E, Scholz W, Grill E, Staudenbauer WL., Mol. Gen. Genet. 209(3), 1987
PMID: 2828885
The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.
Stolzenberger J, Lindner SN, Wendisch VF., Microbiology (Reading, Engl.) 159(Pt 8), 2013
PMID: 23760818
Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus.
te Riele H, Michel B, Ehrlich SD., Proc. Natl. Acad. Sci. U.S.A. 83(8), 1986
PMID: 3085097
Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector.
Titok MA, Chapuis J, Selezneva YV, Lagodich AV, Prokulevich VA, Ehrlich SD, Janniere L., Plasmid 49(1), 2003
PMID: 12584001
Stability of the recombinant plasmid carrying the Bacillus amyloliquefaciens a-amylase gene in B. subtilis.
Vehmaanperii J., Korhola M.., 1986
Control of gene expression by a natural metabolite-responsive ribozyme.
Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR., Nature 428(6980), 2004
PMID: 15029187
Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1.
Wu TY, Chen CT, Liu JT, Bogorad IW, Damoiseaux R, Liao JC., Appl. Microbiol. Biotechnol. 100(11), 2016
PMID: 26846745
Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis.
Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama T, Fujita Y., Nucleic Acids Res. 29(3), 2001
PMID: 11160890
High level of expression and stability of the cloned alkaline protease (aprA) gene in Bacillus subtilis.
Zaghloul TI, Abdelaziz A, Mostafa MH., Enzyme Microb. Technol. 16(6), 1994
PMID: 7764893
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action.
Zhang L, Fan F, Palmer LM, Lonetto MA, Petit C, Voelker LL, St John A, Bankosky B, Rosenberg M, McDevitt D., Gene 255(2), 2000
PMID: 11024290

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27713731
PubMed | Europe PMC

Suchen in

Google Scholar