Sulfate reduction in microorganisms—recent advances and biotechnological applications

Rückert C (2016)
Current Opinion in Microbiology 33: 140-146.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Sulfur, the least common of the five macroelements, plays an important role in biochemistry due to its ability to be easily reduced or oxidized, leading to a great amount of research concerning sulfur bioconversion. Interestingly, new studies concerning microbial sulfate reduction pathways in the last half decade have become increasingly sparse, indicating that most of the pathways involved have been discovered and studied. Despite this, systems biology approaches to model these pathways are often missing or not used. As the products of microbial sulfate reduction play important roles in the environment, biotechnology, and industry, modeling sulfur bioconversion remains an untapped research space for future work.
Current Opinion in Microbiology
Page URI


Rückert C. Sulfate reduction in microorganisms—recent advances and biotechnological applications. Current Opinion in Microbiology. 2016;33:140-146.
Rückert, C. (2016). Sulfate reduction in microorganisms—recent advances and biotechnological applications. Current Opinion in Microbiology, 33, 140-146. doi:10.1016/j.mib.2016.07.007
Rückert, C. (2016). Sulfate reduction in microorganisms—recent advances and biotechnological applications. Current Opinion in Microbiology 33, 140-146.
Rückert, C., 2016. Sulfate reduction in microorganisms—recent advances and biotechnological applications. Current Opinion in Microbiology, 33, p 140-146.
C. Rückert, “Sulfate reduction in microorganisms—recent advances and biotechnological applications”, Current Opinion in Microbiology, vol. 33, 2016, pp. 140-146.
Rückert, C.: Sulfate reduction in microorganisms—recent advances and biotechnological applications. Current Opinion in Microbiology. 33, 140-146 (2016).
Rückert, Christian. “Sulfate reduction in microorganisms—recent advances and biotechnological applications”. Current Opinion in Microbiology 33 (2016): 140-146.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Formate cross-feeding and cooperative metabolic interactions revealed by transcriptomics in co-cultures of acetogenic and amylolytic human colonic bacteria.
Laverde Gomez JA, Mukhopadhya I, Duncan SH, Louis P, Shaw S, Collie-Duguid E, Crost E, Juge N, Flint HJ., Environ Microbiol 21(1), 2019
PMID: 30362296
Formation of Large Native Sulfur Deposits Does Not Require Molecular Oxygen.
Labrado AL, Brunner B, Bernasconi SM, Peckmann J., Front Microbiol 10(), 2019
PMID: 30740094
Analysis of Streptomyces coelicolor M145 genes SCO4164 and SCO5854 encoding putative rhodaneses.
Gren T, Ostash B, Babiy V, Rokytskyy I, Fedorenko V., Folia Microbiol (Praha) 63(2), 2018
PMID: 28942582

52 References

Daten bereitgestellt von Europe PubMed Central.

Methionine production--a critical review.
Willke T., Appl. Microbiol. Biotechnol. 98(24), 2014
PMID: 25381187
Towards methionine overproduction in Corynebacterium glutamicum--methanethiol and dimethyldisulfide as reduced sulfur sources.
Bolten CJ, Schroder H, Dickschat J, Wittmann C., J. Microbiol. Biotechnol. 20(8), 2010
PMID: 20798582
Bacterial methionine biosynthesis.
Ferla MP, Patrick WM., Microbiology (Reading, Engl.) 160(Pt 8), 2014
PMID: 24939187
Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine.
Qin T, Hu X, Hu J, Wang X., Biotechnol. Appl. Biochem. 62(4), 2014
PMID: 25196586
Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-L-methionine.
Han G, Hu X, Qin T, Li Y, Wang X., Enzyme Microb. Technol. 83(), 2015
PMID: 26777246
Co-production of S-adenosyl-L-methionine and L-isoleucine in Corynebacterium glutamicum.
Han G, Hu X, Wang X., Enzyme Microb. Technol. 78(), 2015
PMID: 26215341
Overexpression of methionine adenosyltransferase in Corynebacterium glutamicum for production of S-adenosyl-l-methionine
Han, Biotechnol Appl Biochem (), 2015
The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.
Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J., Metab. Eng. 14(4), 2012
PMID: 22583745
Methanogens: a window into ancient sulfur metabolism.
Liu Y, Beer LL, Whitman WB., Trends Microbiol. 20(5), 2012
PMID: 22406173
Sulfur metabolism in archaea reveals novel processes.
Liu Y, Beer LL, Whitman WB., Environ. Microbiol. 14(10), 2012
PMID: 22626264
Homocysteine is biosynthesized from aspartate semialdehyde and hydrogen sulfide in methanogenic archaea.
Allen KD, Miller DV, Rauch BJ, Perona JJ, White RH., Biochemistry 54(20), 2015
PMID: 25938369
YjeH Is a Novel Exporter of l-Methionine and Branched-Chain Amino Acids in Escherichia coli.
Liu Q, Liang Y, Zhang Y, Shang X, Liu S, Wen J, Wen T., Appl. Environ. Microbiol. 81(22), 2015
PMID: 26319875
Bacterial Cysteine-Inducible Cysteine Resistance Systems.
Takumi K, Nonaka G., J. Bacteriol. 198(9), 2016
PMID: 26883827
Enhancement of L-cysteine production by disruption of yciW in Escherichia coli.
Kawano Y, Ohtsu I, Takumi K, Tamakoshi A, Nonaka G, Funahashi E, Ihara M, Takagi H., J. Biosci. Bioeng. 119(2), 2014
PMID: 25103863
Mycobacterium sulfur metabolism and implications for novel drug targets.
Zeng L, Shi T, Zhao Q, Xie J., Cell Biochem. Biophys. 65(2), 2013
PMID: 23054909
First-in-Class Inhibitors of Sulfur Metabolism with Bactericidal Activity against Non-Replicating M. tuberculosis.
Palde PB, Bhaskar A, Pedro Rosa LE, Madoux F, Chase P, Gupta V, Spicer T, Scampavia L, Singh A, Carroll KS., ACS Chem. Biol. 11(1), 2015
PMID: 26524379
Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism.
Grein F, Ramos AR, Venceslau SS, Pereira IA., Biochim. Biophys. Acta 1827(2), 2012
PMID: 22982583
From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya.
Wachtershauser G., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 361(1474), 2006
PMID: 17008219
Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration.
Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA., J. Bacteriol. 180(11), 1998
PMID: 9603890
Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases.
Muller AL, Kjeldsen KU, Rattei T, Pester M, Loy A., ISME J 9(5), 2014
PMID: 25343514
The "bacterial heterodisulfide" DsrC is a key protein in dissimilatory sulfur metabolism.
Venceslau SS, Stockdreher Y, Dahl C, Pereira IA., Biochim. Biophys. Acta 1837(7), 2014
PMID: 24662917
A protein trisulfide couples dissimilatory sulfate reduction to energy conservation.
Santos AA, Venceslau SS, Grein F, Leavitt WD, Dahl C, Johnston DT, Pereira IA., Science 350(6267), 2015
PMID: 26680199
Eutrophication, microbial-sulfate reduction and mass extinctions.
Schobben M, Stebbins A, Ghaderi A, Strauss H, Korn D, Korte C., Commun Integr Biol 9(1), 2015
PMID: 27066181

Beech, 2007
Corrosion of iron by sulfate-reducing bacteria: new views of an old problem.
Enning D, Garrelfs J., Appl. Environ. Microbiol. 80(4), 2013
PMID: 24317078
Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields.
Priha O, Nyyssonen M, Bomberg M, Laitila A, Simell J, Kapanen A, Juvonen R., Appl. Environ. Microbiol. 79(17), 2013
PMID: 23793633
A kinetic study on bacterial sulfate reduction.
Bernardez LA, de Andrade Lima LR, de Jesus EB, Ramos CL, Almeida PF., Bioprocess Biosyst Eng 36(12), 2013
PMID: 23636473
Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils.
Xia FF, Su Y, Wei XM, He YH, Wu ZC, Ghulam A, He R., Lett. Appl. Microbiol. 59(1), 2014
PMID: 24576086
A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes
Sun, Sci Total Environ 551–552(), 2016
Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.
Biswas K, Taylor MW, Turner SJ., Appl. Microbiol. Biotechnol. 98(3), 2013
PMID: 23838795
dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants.
Biswas K, Taylor MW, Turner SJ., Appl. Microbiol. Biotechnol. 98(16), 2014
PMID: 24788329
Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms.
Carlson HK, Stoeva MK, Justice NB, Sczesnak A, Mullan MR, Mosqueda LA, Kuehl JV, Deutschbauer AM, Arkin AP, Coates JD., Environ. Sci. Technol. 49(6), 2015
PMID: 25698072
Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment.
Engelbrektson A, Hubbard CG, Tom LM, Boussina A, Jin YT, Wong H, Piceno YM, Carlson HK, Conrad ME, Anderson G, Coates JD., Front Microbiol 5(), 2014
PMID: 25071731
A review of biological sulfate conversions in wastewater treatment.
Hao TW, Xiang PY, Mackey HR, Chi K, Lu H, Chui HK, van Loosdrecht MC, Chen GH., Water Res. 65(), 2014
PMID: 25086411
Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: modeling and experimental validation.
Xu X, Chen C, Lee DJ, Wang A, Guo W, Zhou X, Guo H, Yuan Y, Ren N, Chang JS., Bioresour. Technol. 147(), 2013
PMID: 23994962
Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation.
Yuan Y, Chen C, Liang B, Huang C, Zhao Y, Xu X, Tan W, Zhou X, Gao S, Sun D, Lee D, Zhou J, Wang A., J. Hazard. Mater. 269(), 2013
PMID: 24373982
Sulfate reduction at low pH to remediate acid mine drainage.
Sanchez-Andrea I, Sanz JL, Bijmans MF, Stams AJ., J. Hazard. Mater. 269(), 2013
PMID: 24444599
Metal resistance in acidophilic microorganisms and its significance for biotechnologies.
Dopson M, Holmes DS., Appl. Microbiol. Biotechnol. 98(19), 2014
PMID: 25104030
Sulfur Reduction in Acid Rock Drainage Environments.
Florentino AP, Weijma J, Stams AJ, Sanchez-Andrea I., Environ. Sci. Technol. 49(19), 2015
PMID: 26356416
Thiosulphate conversion in a methane and acetate fed membrane bioreactor.
Suarez-Zuluaga DA, Timmers PH, Plugge CM, Stams AJ, Buisman CJ, Weijma J., Environ Sci Pollut Res Int 23(3), 2015
PMID: 26423279
Sulfate permeasesphylogenetic diversity of sulfate transport.
Pilsyk S, Paszewski A., Acta Biochim. Pol. 56(3), 2009
PMID: 19724780


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 27461928
PubMed | Europe PMC

Suchen in

Google Scholar