Corynebacterium glutamicum possesses β-N-acetylglucosaminidase

Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF (2016)
BMC Microbiology 16(1): 177.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 980.33 KB
Autor*in
Matano, ChristianUniBi; Kolkenbrock, Stephan; Hamer, Stefanie N.; Sgobba, ElviraUniBi; Moerschbacher, Bruno M.; Wendisch, Volker F.UniBi
Abstract / Bemerkung
Background In Gram-positive Corynebacterium glutamicum and other members of the suborder Corynebacterianeae, which includes mycobacteria, cell elongation and peptidoglycan biosynthesis is mainly due to polar growth. C. glutamicum lacks an uptake system for the peptidoglycan constituent N-acetylglucosamine (GlcNAc), but is able to catabolize GlcNAc-6-phosphate. Due to its importance in white biotechnology and in order to ensure more sustainable processes based on non-food renewables and to reduce feedstock costs, C. glutamicum strains have previously been engineered to produce amino acids from GlcNAc. GlcNAc also is a constituent of chitin, but it is unknown if C. glutamicum possesses chitinolytic enzymes. Results Chitin was shown here not to be growth substrate for C. glutamicum. However, its genome encodes a putative N-acetylglucosaminidase. The nagA 2 gene product was active as β-N-acetylglucosaminidase with 0.27 mM 4-nitrophenyl N,N’-diacetyl-β-D-chitobioside as substrate supporting half-maximal activity. NagA2 was secreted into the culture medium when overproduced with TAT and Sec dependent signal peptides, while it remained cytoplasmic when overproduced without signal peptide. Heterologous expression of exochitinase gene chiB from Serratia marcescens resulted in chitinolytic activity and ChiB secretion was enhanced when a signal peptide from C. glutamicum was used. Colloidal chitin did not support growth of a strain secreting exochitinase ChiB and β-N-acetylglucosaminidase NagA2. Conclusions C. glutamicum possesses β-N-acetylglucosaminidase. In the wild type, β-N-acetylglucosaminidase activity was too low to be detected. However, overproduction of the enzyme fused to TAT or Sec signal peptides led to secretion of active β-N-acetylglucosaminidase. The finding that concomitant secretion of endogenous NagA2 and exochitinase ChiB from S. marcescens did not entail growth with colloidal chitin as sole or combined carbon source, may indicate the requirement for higher or additional enzyme activities such as processive chitinase or endochitinase activities.
Stichworte
NagA2 N-acetylglucosaminidase Corynebacterium glutamicum Secretion Chitinase
Erscheinungsjahr
2016
Zeitschriftentitel
BMC Microbiology
Band
16
Ausgabe
1
Art.-Nr.
177
ISSN
471-2180
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2904857

Zitieren

Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF. Corynebacterium glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiology. 2016;16(1): 177.
Matano, C., Kolkenbrock, S., Hamer, S. N., Sgobba, E., Moerschbacher, B. M., & Wendisch, V. F. (2016). Corynebacterium glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiology, 16(1), 177. doi:10.1186/s12866-016-0795-3
Matano, Christian, Kolkenbrock, Stephan, Hamer, Stefanie N., Sgobba, Elvira, Moerschbacher, Bruno M., and Wendisch, Volker F. 2016. “Corynebacterium glutamicum possesses β-N-acetylglucosaminidase”. BMC Microbiology 16 (1): 177.
Matano, C., Kolkenbrock, S., Hamer, S. N., Sgobba, E., Moerschbacher, B. M., and Wendisch, V. F. (2016). Corynebacterium glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiology 16:177.
Matano, C., et al., 2016. Corynebacterium glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiology, 16(1): 177.
C. Matano, et al., “Corynebacterium glutamicum possesses β-N-acetylglucosaminidase”, BMC Microbiology, vol. 16, 2016, : 177.
Matano, C., Kolkenbrock, S., Hamer, S.N., Sgobba, E., Moerschbacher, B.M., Wendisch, V.F.: Corynebacterium glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiology. 16, : 177 (2016).
Matano, Christian, Kolkenbrock, Stephan, Hamer, Stefanie N., Sgobba, Elvira, Moerschbacher, Bruno M., and Wendisch, Volker F. “Corynebacterium glutamicum possesses β-N-acetylglucosaminidase”. BMC Microbiology 16.1 (2016): 177.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:40:01Z
MD5 Prüfsumme
1ed77016da477b4ea921ad22fbe7ab0d


76 References

Daten bereitgestellt von Europe PubMed Central.

Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation.
Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L., J. Bacteriol. 188(23), 2006
PMID: 16997948
Regulation of carbon metabolism in Corynebacterium glutamicum
Arndt A, Eikmanns BJ., 2008
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl. Microbiol. Biotechnol. 98(3), 2013
PMID: 24270893
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J. Biotechnol. 191(), 2014
PMID: 24910970
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol. 12(), 2012
PMID: 22963379
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour. Technol. 145(), 2013
PMID: 23562176
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl. Environ. Microbiol. 74(20), 2008
PMID: 18757581
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Production of L-Lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface.
Tateno T, Fukuda H, Kondo A., Appl. Microbiol. Biotechnol. 74(6), 2007
PMID: 17216452
Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 77(5), 2007
PMID: 17965859
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672486
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl. Microbiol. Biotechnol. 92(5), 2011
PMID: 21796382
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24668244
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
N-acetylglucosamine: production and applications.
Chen JK, Shen CR, Liu CL., Mar Drugs 8(9), 2010
PMID: 20948902
Efficient use of shrimp waste: present and future trends.
Kandra P, Challa MM, Jyothi HK., Appl. Microbiol. Biotechnol. 93(1), 2011
PMID: 22052390

AUTHOR UNKNOWN, 0
Sialic acid utilization by the soil bacterium Corynebacterium glutamicum.
Gruteser N, Marin K, Kramer R, Thomas GH., FEMS Microbiol. Lett. 336(2), 2012
PMID: 22924979
Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach AL, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ., PLoS Genet. 7(9), 2011
PMID: 21931557
Bacterial cell-wall recycling.
Johnson JW, Fisher JF, Mobashery S., Ann. N. Y. Acad. Sci. 1277(), 2012
PMID: 23163477
Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by beta-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase.
Litzinger S, Duckworth A, Nitzsche K, Risinger C, Wittmann V, Mayer C., J. Bacteriol. 192(12), 2010
PMID: 20400549
The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation.
Reizer J, Saier MH Jr, Deutscher J, Grenier F, Thompson J, Hengstenberg W., Crit. Rev. Microbiol. 15(4), 1988
PMID: 3060316
Peptidoglycan turnover and recycling in Gram-positive bacteria.
Reith J, Mayer C., Appl. Microbiol. Biotechnol. 92(1), 2011
PMID: 21796380
Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum.
Letek M, Fiuza M, Ordonez E, Villadangos AF, Ramos A, Mateos LM, Gil JA., Antonie Van Leeuwenhoek 94(1), 2008
PMID: 18283557
Cell division in Corynebacterineae.
Donovan C, Bramkamp M., Front Microbiol 5(), 2014
PMID: 24782835
Production of N-acetyl-D-glucosamine from alpha-chitin by crude enzymes from Aeromonas hydrophila H-2330.
Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Hiraga K, Oda K, Aiba S., Carbohydr. Res. 337(8), 2002
PMID: 11950472
Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism.
Litzinger S, Fischer S, Polzer P, Diederichs K, Welte W, Mayer C., J. Biol. Chem. 285(46), 2010
PMID: 20826810
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence.
Teramoto H, Watanabe K, Suzuki N, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 91(3), 2011
PMID: 21523478
Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences.
Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H., Microbiology (Reading, Engl.) 155(Pt 3), 2009
PMID: 19246745
The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032.
Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Puhler A, Kalinowski J., Microbiology (Reading, Engl.) 152(Pt 4), 2006
PMID: 16549657
Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy.
Hansmeier N, Bartels FW, Ros R, Anselmetti D, Tauch A, Puhler A, Kalinowski J., J. Biotechnol. 112(1-2), 2004
PMID: 15288952
Characterization of a beta-N-acetylhexosaminidase and a beta-N-acetylglucosaminidase/beta-glucosidase from Cellulomonas fimi.
Mayer C, Vocadlo DJ, Mah M, Rupitz K, Stoll D, Warren RA, Withers SG., FEBS J. 273(13), 2006
PMID: 16762038
Expression and secretion of heterologous proteases by Corynebacterium glutamicum.
Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A., Appl. Environ. Microbiol. 61(4), 1995
PMID: 7747974
Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure.
Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H., Proc. Natl. Acad. Sci. U.S.A. 105(10), 2008
PMID: 18316738
Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum.
Marchand CH, Salmeron C, Bou Raad R, Meniche X, Chami M, Masi M, Blanot D, Daffe M, Tropis M, Huc E, Le Marechal P, Decottignies P, Bayan N., J. Bacteriol. 194(3), 2011
PMID: 22123248
Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum.
Matsuda Y, Itaya H, Kitahara Y, Theresia NM, Kutukova EA, Yomantas YA, Date M, Kikuchi Y, Wachi M., Microb. Cell Fact. 13(1), 2014
PMID: 24731213
Secretion of human epidermal growth factor by Corynebacterium glutamicum.
Date M, Itaya H, Matsui H, Kikuchi Y., Lett. Appl. Microbiol. 42(1), 2006
PMID: 16411922
Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum.
Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y., Appl. Environ. Microbiol. 69(5), 2003
PMID: 12732581
Green fluorescent protein functions as a reporter for protein localization in Escherichia coli.
Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ., J. Bacteriol. 182(14), 2000
PMID: 10869087
Development of novel cell surface display in Corynebacterium glutamicum using porin.
Tateno T, Hatada K, Tanaka T, Fukuda H, Kondo A., Appl. Microbiol. Biotechnol. 84(4), 2009
PMID: 19430772
Long-term results of hysteroscopic myomectomy in 235 patients.
Polena V, Mergui JL, Perrot N, Poncelet C, Barranger E, Uzan S., Eur. J. Obstet. Gynecol. Reprod. Biol. 130(2), 2006
PMID: 16530319
Comparative studies of chitinases A, B and C from Serratia marcescens
Horn SJ, Sørlie M, Vaaje-Kolstad G, Norberg AL, Synstad B, Vårum KM, Eijsink VGH., 2006
Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides.
Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sorlie M, Synstad B, Vriend G, Varum KM, Eijsink VG., Proc. Natl. Acad. Sci. U.S.A. 103(48), 2006
PMID: 17116887

Sambrook J, Russell D., 2001
Experiments
Eggeling L, Reyes O., 2005
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Detection of chitinase activity after polyacrylamide gel electrophoresis.
Trudel J, Asselin A., Anal. Biochem. 178(2), 1989
PMID: 2473667
Use of dinitrosalicylic acid reagent for determination of reducing sugar
Miller GL., 1959
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27492186
PubMed | Europe PMC

Suchen in

Google Scholar