Partitioning, duality, and linkage disequilibria in the Moran model with recombination
Esser M, Probst S, Baake E (2016)
JOURNAL OF MATHEMATICAL BIOLOGY 73(1): 161-197.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The multilocus Moran model with recombination is considered, which describes the evolution of the genetic composition of a population under recombination and resampling. We investigate a marginal ancestral recombination process, where each site is sampled only in one individual and we do not make any scaling assumptions in the first place. Following the ancestry of these loci backward in time yields a partition-valued Markov process, which experiences splitting and coalescence. In the diffusion limit, this process turns into a marginalised version of the multilocus ancestral recombination graph. With the help of an inclusion-exclusion principle and so-called recombinators we show that the type distribution corresponding to a given partition may be represented in a systematic way by a sampling function. The same is true of correlation functions (known as linkage disequilibria in genetics) of all orders. We prove that the partitioning process (backward in time) is dual to the Moran population process (forward in time), where the sampling function plays the role of the duality function. This sheds new light on the work of Bobrowski et al. (J Math Biol 61:455-473, 2010). The result also leads to a closed system of ordinary differential equations for the expectations of the sampling functions, which can be translated into expected type distributions and expected linkage disequilibria.
Stichworte
Moran model with recombination;
Ancestral recombination process;
Linkage;
disequilibria;
Mobius inversion;
Duality
Erscheinungsjahr
2016
Zeitschriftentitel
JOURNAL OF MATHEMATICAL BIOLOGY
Band
73
Ausgabe
1
Seite(n)
161-197
ISSN
0303-6812
eISSN
1432-1416
Page URI
https://pub.uni-bielefeld.de/record/2904686
Zitieren
Esser M, Probst S, Baake E. Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY. 2016;73(1):161-197.
Esser, M., Probst, S., & Baake, E. (2016). Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY, 73(1), 161-197. doi:10.1007/s00285-015-0936-6
Esser, Mareike, Probst, Sebastian, and Baake, Ellen. 2016. “Partitioning, duality, and linkage disequilibria in the Moran model with recombination”. JOURNAL OF MATHEMATICAL BIOLOGY 73 (1): 161-197.
Esser, M., Probst, S., and Baake, E. (2016). Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY 73, 161-197.
Esser, M., Probst, S., & Baake, E., 2016. Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY, 73(1), p 161-197.
M. Esser, S. Probst, and E. Baake, “Partitioning, duality, and linkage disequilibria in the Moran model with recombination”, JOURNAL OF MATHEMATICAL BIOLOGY, vol. 73, 2016, pp. 161-197.
Esser, M., Probst, S., Baake, E.: Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY. 73, 161-197 (2016).
Esser, Mareike, Probst, Sebastian, and Baake, Ellen. “Partitioning, duality, and linkage disequilibria in the Moran model with recombination”. JOURNAL OF MATHEMATICAL BIOLOGY 73.1 (2016): 161-197.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
A coalescent dual process for a Wright-Fisher diffusion with recombination and its application to haplotype partitioning.
Griffiths RC, Jenkins PA, Lessard S., Theor Popul Biol 112(), 2016
PMID: 27594345
Griffiths RC, Jenkins PA, Lessard S., Theor Popul Biol 112(), 2016
PMID: 27594345
43 References
Daten bereitgestellt von Europe PubMed Central.
M, 1979
M, Monatsh Math 146(), 2005
M, Can J Math 55(), 2003
Single-crossover dynamics: finite versus infinite populations.
Baake E, Herms I., Bull. Math. Biol. 70(2), 2007
PMID: 17957409
Baake E, Herms I., Bull. Math. Biol. 70(2), 2007
PMID: 17957409
E, Markov Process Relat Fields 17(), 2011
Single-crossover recombination and ancestral recombination trees.
Baake E, von Wangenheim U., J Math Biol 68(6), 2013
PMID: 23564407
Baake E, von Wangenheim U., J Math Biol 68(6), 2013
PMID: 23564407
E, Discrete Contin Dyn Syst 36(), 2016
C, 1971
CLOSED-FORM ASYMPTOTIC SAMPLING DISTRIBUTIONS UNDER THE COALESCENT WITH RECOMBINATION FOR AN ARBITRARY NUMBER OF LOCI.
Bhaskar A, Song YS., Adv Appl Probab 44(2), 2012
PMID: 22859863
Bhaskar A, Song YS., Adv Appl Probab 44(2), 2012
PMID: 22859863
A, Math Methods Appl Sci 26(), 2003
Asymptotic behavior of a Moran model with mutations, drift and recombination among multiple loci.
Bobrowski A, Wojdyla T, Kimmel M., J Math Biol 61(3), 2009
PMID: 19904539
Bobrowski A, Wojdyla T, Kimmel M., J Math Biol 61(3), 2009
PMID: 19904539
R, 2000
P, 1986
R, 2008
FJ, J Math Phys 3(), 1962
AUTHOR UNKNOWN, 0
H, Ann Math Stat 15(), 1944
The sampling distribution of linkage disequilibrium.
Golding GB., Genetics 108(1), 1984
PMID: 6479585
Golding GB., Genetics 108(1), 1984
PMID: 6479585
Decomposing multilocus linkage disequilibrium.
Gorelick R, Laubichler MD., Genetics 166(3), 2004
PMID: 15082571
Gorelick R, Laubichler MD., Genetics 166(3), 2004
PMID: 15082571
Ancestral inference from samples of DNA sequences with recombination.
Griffiths RC, Marjoram P., J. Comput. Biol. 3(4), 1996
PMID: 9018600
Griffiths RC, Marjoram P., J. Comput. Biol. 3(4), 1996
PMID: 9018600
Linkage disequilibrium, selection and recombination at three Loci.
Hastings A., Genetics 106(1), 1984
PMID: 17246189
Hastings A., Genetics 106(1), 1984
PMID: 17246189
J, 2005
Properties of a neutral allele model with intragenic recombination.
Hudson RR., Theor Popul Biol 23(2), 1983
PMID: 6612631
Hudson RR., Theor Popul Biol 23(2), 1983
PMID: 6612631
S, Probab Surv 11(), 2014
AN ASYMPTOTIC SAMPLING FORMULA FOR THE COALESCENT WITH RECOMBINATION.
Jenkins PA, Song YS., Ann Appl Probab 20(3), 2010
PMID: 20671802
Jenkins PA, Song YS., Ann Appl Probab 20(3), 2010
PMID: 20671802
Inference from samples of DNA sequences using a two-locus model.
Jenkins PA, Griffiths RC., J. Comput. Biol. 18(1), 2011
PMID: 21210733
Jenkins PA, Griffiths RC., J. Comput. Biol. 18(1), 2011
PMID: 21210733
PA, Electron J Probab 20(), 2015
TM, 1985
S, J Appl Probab 50(), 2013
Approximating the coalescent with recombination.
McVean GA, Cardin NJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1459), 2005
PMID: 16048782
McVean GA, Cardin NJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1459), 2005
PMID: 16048782
ML, 1991
M, Stoch Proc Appl 95(), 2001
T, Genet Res 13(), 1969
J, Arch Control Sci 9(), 1999
A simple model of linkage disequilibrium and genetic drift in human genomic SNPs: importance of demography and SNP age.
Polanska J, Kimmel M., Hum. Hered. 60(4), 2005
PMID: 16397398
Polanska J, Kimmel M., Hum. Hered. 60(4), 2005
PMID: 16397398
G-C, Z Wahrscheinlichkeitstheorie 2(), 1964
Analytic computation of the expectation of the linkage disequilibrium coefficient r2.
Song YS, Song JS., Theor Popul Biol 71(1), 2006
PMID: 17069867
Song YS, Song JS., Theor Popul Biol 71(1), 2006
PMID: 17069867
RP, 1986
Single-crossover recombination in discrete time.
von Wangenheim U, Baake E, Baake M., J Math Biol 60(5), 2009
PMID: 19636557
von Wangenheim U, Baake E, Baake M., J Math Biol 60(5), 2009
PMID: 19636557
J, 2009
Bayesian inference of fine-scale recombination rates using population genomic data.
Wang Y, Rannala B., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363(1512), 2008
PMID: 18852101
Wang Y, Rannala B., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363(1512), 2008
PMID: 18852101
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 26545359
PubMed | Europe PMC
Suchen in