Partitioning, duality, and linkage disequilibria in the Moran model with recombination

Esser M, Probst S, Baake E (2016)
JOURNAL OF MATHEMATICAL BIOLOGY 73(1): 161-197.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The multilocus Moran model with recombination is considered, which describes the evolution of the genetic composition of a population under recombination and resampling. We investigate a marginal ancestral recombination process, where each site is sampled only in one individual and we do not make any scaling assumptions in the first place. Following the ancestry of these loci backward in time yields a partition-valued Markov process, which experiences splitting and coalescence. In the diffusion limit, this process turns into a marginalised version of the multilocus ancestral recombination graph. With the help of an inclusion-exclusion principle and so-called recombinators we show that the type distribution corresponding to a given partition may be represented in a systematic way by a sampling function. The same is true of correlation functions (known as linkage disequilibria in genetics) of all orders. We prove that the partitioning process (backward in time) is dual to the Moran population process (forward in time), where the sampling function plays the role of the duality function. This sheds new light on the work of Bobrowski et al. (J Math Biol 61:455-473, 2010). The result also leads to a closed system of ordinary differential equations for the expectations of the sampling functions, which can be translated into expected type distributions and expected linkage disequilibria.
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF MATHEMATICAL BIOLOGY
Band
73
Ausgabe
1
Seite(n)
161-197
ISSN
eISSN
PUB-ID

Zitieren

Esser M, Probst S, Baake E. Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY. 2016;73(1):161-197.
Esser, M., Probst, S., & Baake, E. (2016). Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY, 73(1), 161-197. doi:10.1007/s00285-015-0936-6
Esser, M., Probst, S., and Baake, E. (2016). Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY 73, 161-197.
Esser, M., Probst, S., & Baake, E., 2016. Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY, 73(1), p 161-197.
M. Esser, S. Probst, and E. Baake, “Partitioning, duality, and linkage disequilibria in the Moran model with recombination”, JOURNAL OF MATHEMATICAL BIOLOGY, vol. 73, 2016, pp. 161-197.
Esser, M., Probst, S., Baake, E.: Partitioning, duality, and linkage disequilibria in the Moran model with recombination. JOURNAL OF MATHEMATICAL BIOLOGY. 73, 161-197 (2016).
Esser, Mareike, Probst, Sebastian, and Baake, Ellen. “Partitioning, duality, and linkage disequilibria in the Moran model with recombination”. JOURNAL OF MATHEMATICAL BIOLOGY 73.1 (2016): 161-197.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

43 References

Daten bereitgestellt von Europe PubMed Central.


M, 1979

M, Monatsh Math 146(), 2005

M, Can J Math 55(), 2003
Single-crossover dynamics: finite versus infinite populations.
Baake E, Herms I., Bull. Math. Biol. 70(2), 2007
PMID: 17957409

E, Markov Process Relat Fields 17(), 2011
Single-crossover recombination and ancestral recombination trees.
Baake E, von Wangenheim U., J Math Biol 68(6), 2013
PMID: 23564407

E, Discrete Contin Dyn Syst 36(), 2016
On the theory of random mating.
BENNETT JH., Ann Eugen 18(4), 1954
PMID: 13148997

C, 1971

A, Math Methods Appl Sci 26(), 2003

R, 2000

P, 1986

R, 2008

FJ, J Math Phys 3(), 1962

AUTHOR UNKNOWN, 0

H, Ann Math Stat 15(), 1944
The sampling distribution of linkage disequilibrium.
Golding GB., Genetics 108(1), 1984
PMID: 6479585
Decomposing multilocus linkage disequilibrium.
Gorelick R, Laubichler MD., Genetics 166(3), 2004
PMID: 15082571
Ancestral inference from samples of DNA sequences with recombination.
Griffiths RC, Marjoram P., J. Comput. Biol. 3(4), 1996
PMID: 9018600

J, 2005
Properties of a neutral allele model with intragenic recombination.
Hudson RR., Theor Popul Biol 23(2), 1983
PMID: 6612631

S, Probab Surv 11(), 2014
AN ASYMPTOTIC SAMPLING FORMULA FOR THE COALESCENT WITH RECOMBINATION.
Jenkins PA, Song YS., Ann Appl Probab 20(3), 2010
PMID: 20671802
Inference from samples of DNA sequences using a two-locus model.
Jenkins PA, Griffiths RC., J. Comput. Biol. 18(1), 2011
PMID: 21210733

PA, Electron J Probab 20(), 2015

TM, 1985

S, J Appl Probab 50(), 2013
Approximating the coalescent with recombination.
McVean GA, Cardin NJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1459), 2005
PMID: 16048782

ML, 1991

M, Stoch Proc Appl 95(), 2001

T, Genet Res 13(), 1969

J, Arch Control Sci 9(), 1999

G-C, Z Wahrscheinlichkeitstheorie 2(), 1964

RP, 1986
Single-crossover recombination in discrete time.
von Wangenheim U, Baake E, Baake M., J Math Biol 60(5), 2009
PMID: 19636557

J, 2009
Bayesian inference of fine-scale recombination rates using population genomic data.
Wang Y, Rannala B., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363(1512), 2008
PMID: 18852101
On the number of ancestors to a DNA sequence.
Wiuf C, Hein J., Genetics 147(3), 1997
PMID: 9383085

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26545359
PubMed | Europe PMC

Suchen in

Google Scholar