Normal zeta functions of the Heisenberg groups over number rings II — the non-split case

Schein MM, Voll C (2016)
Israel Journal of Mathematics 211(1): 171-195.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor/in
;
Abstract / Bemerkung
We compute explicitly the normal zeta functions of the Heisenberg groups H(R), where R is a compact discrete valuation ring of characteristic zero. These zeta functions occur as Euler factors of normal zeta functions of Heisenberg groups of the form H(OK), where OK is the ring of integers of an arbitrary number field K, at the rational primes which are non-split in K. We show that these local zeta functions satisfy functional equations upon inversion of the prime.
Erscheinungsjahr
Zeitschriftentitel
Israel Journal of Mathematics
Band
211
Ausgabe
1
Seite(n)
171-195
ISSN
eISSN
PUB-ID

Zitieren

Schein MM, Voll C. Normal zeta functions of the Heisenberg groups over number rings II — the non-split case. Israel Journal of Mathematics. 2016;211(1):171-195.
Schein, M. M., & Voll, C. (2016). Normal zeta functions of the Heisenberg groups over number rings II — the non-split case. Israel Journal of Mathematics, 211(1), 171-195. doi:10.1007/s11856-015-1271-8
Schein, M. M., and Voll, C. (2016). Normal zeta functions of the Heisenberg groups over number rings II — the non-split case. Israel Journal of Mathematics 211, 171-195.
Schein, M.M., & Voll, C., 2016. Normal zeta functions of the Heisenberg groups over number rings II — the non-split case. Israel Journal of Mathematics, 211(1), p 171-195.
M.M. Schein and C. Voll, “Normal zeta functions of the Heisenberg groups over number rings II — the non-split case”, Israel Journal of Mathematics, vol. 211, 2016, pp. 171-195.
Schein, M.M., Voll, C.: Normal zeta functions of the Heisenberg groups over number rings II — the non-split case. Israel Journal of Mathematics. 211, 171-195 (2016).
Schein, Michael M., and Voll, Christopher. “Normal zeta functions of the Heisenberg groups over number rings II — the non-split case”. Israel Journal of Mathematics 211.1 (2016): 171-195.