Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers
Rueckriem K, Grotheer S, Vieker H, Penner P, Beyer A, Gölzhäuser A, Swiderek P (2016)
BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7: 852-861.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Rueckriem, Kai;
Grotheer, Sarah;
Vieker, HenningUniBi;
Penner, PaulUniBi;
Beyer, AndréUniBi ;
Gölzhäuser, ArminUniBi ;
Swiderek, Petra
Abstract / Bemerkung
Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II) acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II) oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.
Stichworte
copper(II) oxalate;
electron-induced reactions;
layer-by-layer;
deposition;
nanoparticle formation;
thin film
Erscheinungsjahr
2016
Zeitschriftentitel
BEILSTEIN JOURNAL OF NANOTECHNOLOGY
Band
7
Seite(n)
852-861
ISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2904533
Zitieren
Rueckriem K, Grotheer S, Vieker H, et al. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY. 2016;7:852-861.
Rueckriem, K., Grotheer, S., Vieker, H., Penner, P., Beyer, A., Gölzhäuser, A., & Swiderek, P. (2016). Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 7, 852-861. doi:10.3762/bjnano.7.77
Rueckriem, Kai, Grotheer, Sarah, Vieker, Henning, Penner, Paul, Beyer, André, Gölzhäuser, Armin, and Swiderek, Petra. 2016. “Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers”. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7: 852-861.
Rueckriem, K., Grotheer, S., Vieker, H., Penner, P., Beyer, A., Gölzhäuser, A., and Swiderek, P. (2016). Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7, 852-861.
Rueckriem, K., et al., 2016. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 7, p 852-861.
K. Rueckriem, et al., “Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers”, BEILSTEIN JOURNAL OF NANOTECHNOLOGY, vol. 7, 2016, pp. 852-861.
Rueckriem, K., Grotheer, S., Vieker, H., Penner, P., Beyer, A., Gölzhäuser, A., Swiderek, P.: Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY. 7, 852-861 (2016).
Rueckriem, Kai, Grotheer, Sarah, Vieker, Henning, Penner, Paul, Beyer, André, Gölzhäuser, Armin, and Swiderek, Petra. “Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers”. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7 (2016): 852-861.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
54 References
Daten bereitgestellt von Europe PubMed Central.
Utke I, Hoffmann P, Melngailis J., 2008
Approaching the resolution limit of nanometer-scale electron beam-induced deposition.
van Dorp WF, van Someren B, Hagen CW, Kruit P, Crozier PA., Nano Lett. 5(7), 2005
PMID: 16178228
van Dorp WF, van Someren B, Hagen CW, Kruit P, Crozier PA., Nano Lett. 5(7), 2005
PMID: 16178228
Focused electron beam induced deposition: A perspective.
Huth M, Porrati F, Schwalb C, Winhold M, Sachser R, Dukic M, Adams J, Fantner G., Beilstein J Nanotechnol 3(), 2012
PMID: 23019557
Huth M, Porrati F, Schwalb C, Winhold M, Sachser R, Dukic M, Adams J, Fantner G., Beilstein J Nanotechnol 3(), 2012
PMID: 23019557
Spencer J, Rosenberg S, Barclay M, Wu Y-C, McElwee-White L, Howard D., 2014
Electron-beam-induced deposition of metallic microstructures from a molten-salt film on conductive and nonconductive substrates.
Halka V, Schmid MJ, Avrutskiy V, Ma X, Schuster R., Angew. Chem. Int. Ed. Engl. 50(20), 2011
PMID: 21495123
Halka V, Schmid MJ, Avrutskiy V, Ma X, Schuster R., Angew. Chem. Int. Ed. Engl. 50(20), 2011
PMID: 21495123
Electron-beam-induced deposition of platinum from a liquid precursor.
Donev EU, Hastings JT., Nano Lett. 9(7), 2009
PMID: 19583284
Donev EU, Hastings JT., Nano Lett. 9(7), 2009
PMID: 19583284
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.
Liu Y, Chen X, Noh KW, Dillon SJ., Nanotechnology 23(38), 2012
PMID: 22948193
Liu Y, Chen X, Noh KW, Dillon SJ., Nanotechnology 23(38), 2012
PMID: 22948193
Electron-beam-induced deposition of bimetallic nanostructures from bulk liquids.
Bresin M, Chamberlain A, Donev EU, Samantaray CB, Schardien GS, Hastings JT., Angew. Chem. Int. Ed. Engl. 52(31), 2013
PMID: 23788490
Bresin M, Chamberlain A, Donev EU, Samantaray CB, Schardien GS, Hastings JT., Angew. Chem. Int. Ed. Engl. 52(31), 2013
PMID: 23788490
Gölzhäuser A, Geyer W, Stadler V, Eck W, Grunze M, Edinger K, Weimann T, Hinze P., 2000
Turchanin A, Gölzhäuser A., 2012
Li Y, Kim Y, Lee E, Cai W, Cho S., 2006
Herley P, Jones W., 1992
Convergent electron beam induced growth of copper nanostructures: evidence of the importance of a soft template.
Yen MY, Chiu CW, Chen FR, Kai JJ, Lee CY, Chiu HT., Langmuir 20(2), 2004
PMID: 15743064
Yen MY, Chiu CW, Chen FR, Kai JJ, Lee CY, Chiu HT., Langmuir 20(2), 2004
PMID: 15743064
Corbierre M, Beerens J, Lennox R., 2005
Kim Y, Yoo S, Cho S., 2009
Zhang W, Song J, Liao W, Guan Y, Zhang Y, Zhu X., 2013
Parent L, Robinson D, Cappillino P, Hartnett R, Abellan P, Evans J, Browning N, Arslan I., 2014
Electron beam synthesis of metal and semiconductor nanoparticles using metal-organic frameworks as ordered precursors.
Jacobs BW, Houk RJ, Wong BM, Talin AA, Allendorf MD., Nanotechnology 22(37), 2011
PMID: 21852720
Jacobs BW, Houk RJ, Wong BM, Talin AA, Allendorf MD., Nanotechnology 22(37), 2011
PMID: 21852720
One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation.
Kim SE, Han YH, Lee Bc, Lee JC., Nanotechnology 21(7), 2010
PMID: 20081291
Kim SE, Han YH, Lee Bc, Lee JC., Nanotechnology 21(7), 2010
PMID: 20081291
Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective.
Botman A, Mulders JJ, Hagen CW., Nanotechnology 20(37), 2009
PMID: 19706953
Botman A, Mulders JJ, Hagen CW., Nanotechnology 20(37), 2009
PMID: 19706953
Self-assembled monolayers of thiolates on metals as a form of nanotechnology.
Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM., Chem. Rev. 105(4), 2005
PMID: 15826011
Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM., Chem. Rev. 105(4), 2005
PMID: 15826011
Kind M, Wöll C., 2009
Arslan H, Shekhah O, Wohlgemuth J, Franzreb M, Fischer R, Wöll C., 2011
Thin films of metal-organic frameworks.
Zacher D, Shekhah O, Woll C, Fischer RA., Chem Soc Rev 38(5), 2009
PMID: 19384445
Zacher D, Shekhah O, Woll C, Fischer RA., Chem Soc Rev 38(5), 2009
PMID: 19384445
Stavila V, Volponi J, Katzenmeyer A, Dixon M, Allendorf M., 2012
Formation and structure of copper(II) oxalate layers on carboxy-terminated self-assembled monolayers.
Schrader I, Wittig L, Richter K, Vieker H, Beyer A, Golzhauser A, Hartwig A, Swiderek P., Langmuir 30(40), 2014
PMID: 25225717
Schrader I, Wittig L, Richter K, Vieker H, Beyer A, Golzhauser A, Hartwig A, Swiderek P., Langmuir 30(40), 2014
PMID: 25225717
Paul J, Williams G, Hoffmann F., 2003
Scott K, Wieghardt K, Sykes A., 1973
Fujita J, Martell A, Nakamoto K., 1962
Raman, infrared and force field studies of K2(12)C2O4 x H2O and K2(13)C2O4 x H2O in the solid state and in aqueous solution, and of (NH4)2(12)C2O4 x H2O and (NH4)2(13)C2O4 x H2O in the solid state.
Clark RJ, Firth S., Spectrochim Acta A Mol Biomol Spectrosc 58(8), 2002
PMID: 12166744
Clark RJ, Firth S., Spectrochim Acta A Mol Biomol Spectrosc 58(8), 2002
PMID: 12166744
Millar G, Seakins J, Metson J, Bowmaker G, Cooney R., 1994
Yamada H, Person W., 1964
Pritchard J, Catterick T, Gupta R., 1975
Cecchet F, Pilling M, Hevesi L, Schergna S, Wong J, Clarkson G, Leigh D, Rudolf P., 2003
Seshadri K, Froyd K, Parikh A, Allara D, Lercel M, Craighead H., 1996
Poulston S, Parlett P, Stone P, Bowker M., 1996
Nickolov R, Donkova B, Milenova K, Mehandjiev D., 2006
Biesinger M, Payne B, Grosvenor A, Lau L, Gerson A, Smart R., 2010
Metallic copper nanostructures synthesized by a facile hydrothermal method.
Chen H, Lee JH, Kim YH, Shin DW, Park SC, Meng X, Yoo JB., J Nanosci Nanotechnol 10(1), 2010
PMID: 20352903
Chen H, Lee JH, Kim YH, Shin DW, Park SC, Meng X, Yoo JB., J Nanosci Nanotechnol 10(1), 2010
PMID: 20352903
Control of chemical reactions and synthesis by low-energy electrons.
Bohler E, Warneke J, Swiderek P., Chem Soc Rev 42(24), 2013
PMID: 24088739
Bohler E, Warneke J, Swiderek P., Chem Soc Rev 42(24), 2013
PMID: 24088739
Seah M, Dench W., 1979
Swiderek P, Jolondz E, Bredehöft J, Borrmann T, Dölle C, Ott M, Schmüser C, Hartwig A, Danilov V, Wagner H-E., 2012
Selective terminal function modification of SAMs driven by low-energy electrons (0-15 eV).
Houplin J, Amiaud L, Humblot V, Martin I, Matar E, Azria R, Pradier CM, Lafosse A., Phys Chem Chem Phys 15(19), 2013
PMID: 23558312
Houplin J, Amiaud L, Humblot V, Martin I, Matar E, Azria R, Pradier CM, Lafosse A., Phys Chem Chem Phys 15(19), 2013
PMID: 23558312
NIST Mass Spec Data Center
Stein S., 0
Stein S., 0
Hartman K, Hisatsune I., 1966
Koppenol W, Rush J., 1987
Martin D, Cole R, Haq S., 2003
The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts.
Behrens M, Studt F, Kasatkin I, Kuhl S, Havecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Norskov JK, Schlogl R., Science 336(6083), 2012
PMID: 22517324
Behrens M, Studt F, Kasatkin I, Kuhl S, Havecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Norskov JK, Schlogl R., Science 336(6083), 2012
PMID: 22517324
Bönicke I, Kirstein W, Thieme F., 1994
Fu S, Somorjai G., 1992
Low-energy electron scattering cross section for the production of CO within solid films of carbon dioxide.
Deschamps MC, Michaud M, Sanche L., J Chem Phys 121(9), 2004
PMID: 15332976
Deschamps MC, Michaud M, Sanche L., J Chem Phys 121(9), 2004
PMID: 15332976
Pedersen D, Wang S., 2007
Vogt A, Han T, Beebe T., 1997
Asami K., 1976
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 27547602
PubMed | Europe PMC
Suchen in