Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

Rueckriem K, Grotheer S, Vieker H, Penner P, Beyer A, Gölzhäuser A, Swiderek P (2016)
BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7: 852-861.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II) acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II) oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.
Erscheinungsjahr
Zeitschriftentitel
BEILSTEIN JOURNAL OF NANOTECHNOLOGY
Band
7
Seite(n)
852-861
ISSN
PUB-ID

Zitieren

Rueckriem K, Grotheer S, Vieker H, et al. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY. 2016;7:852-861.
Rueckriem, K., Grotheer, S., Vieker, H., Penner, P., Beyer, A., Gölzhäuser, A., & Swiderek, P. (2016). Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 7, 852-861. doi:10.3762/bjnano.7.77
Rueckriem, K., Grotheer, S., Vieker, H., Penner, P., Beyer, A., Gölzhäuser, A., and Swiderek, P. (2016). Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7, 852-861.
Rueckriem, K., et al., 2016. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 7, p 852-861.
K. Rueckriem, et al., “Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers”, BEILSTEIN JOURNAL OF NANOTECHNOLOGY, vol. 7, 2016, pp. 852-861.
Rueckriem, K., Grotheer, S., Vieker, H., Penner, P., Beyer, A., Gölzhäuser, A., Swiderek, P.: Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY. 7, 852-861 (2016).
Rueckriem, Kai, Grotheer, Sarah, Vieker, Henning, Penner, Paul, Beyer, André, Gölzhäuser, Armin, and Swiderek, Petra. “Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers”. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 7 (2016): 852-861.

54 References

Daten bereitgestellt von Europe PubMed Central.


Utke I, Hoffmann P, Melngailis J., 2008
Approaching the resolution limit of nanometer-scale electron beam-induced deposition.
van Dorp WF, van Someren B, Hagen CW, Kruit P, Crozier PA., Nano Lett. 5(7), 2005
PMID: 16178228
Focused electron beam induced deposition: A perspective.
Huth M, Porrati F, Schwalb C, Winhold M, Sachser R, Dukic M, Adams J, Fantner G., Beilstein J Nanotechnol 3(), 2012
PMID: 23019557

Spencer J, Rosenberg S, Barclay M, Wu Y-C, McElwee-White L, Howard D., 2014
Electron-beam-induced deposition of metallic microstructures from a molten-salt film on conductive and nonconductive substrates.
Halka V, Schmid MJ, Avrutskiy V, Ma X, Schuster R., Angew. Chem. Int. Ed. Engl. 50(20), 2011
PMID: 21495123
Electron-beam-induced deposition of platinum from a liquid precursor.
Donev EU, Hastings JT., Nano Lett. 9(7), 2009
PMID: 19583284
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.
Liu Y, Chen X, Noh KW, Dillon SJ., Nanotechnology 23(38), 2012
PMID: 22948193
Electron-beam-induced deposition of bimetallic nanostructures from bulk liquids.
Bresin M, Chamberlain A, Donev EU, Samantaray CB, Schardien GS, Hastings JT., Angew. Chem. Int. Ed. Engl. 52(31), 2013
PMID: 23788490

Gölzhäuser A, Geyer W, Stadler V, Eck W, Grunze M, Edinger K, Weimann T, Hinze P., 2000

Turchanin A, Gölzhäuser A., 2012

Li Y, Kim Y, Lee E, Cai W, Cho S., 2006

Herley P, Jones W., 1992
Convergent electron beam induced growth of copper nanostructures: evidence of the importance of a soft template.
Yen MY, Chiu CW, Chen FR, Kai JJ, Lee CY, Chiu HT., Langmuir 20(2), 2004
PMID: 15743064

Corbierre M, Beerens J, Lennox R., 2005

Kim Y, Yoo S, Cho S., 2009

Zhang W, Song J, Liao W, Guan Y, Zhang Y, Zhu X., 2013

Parent L, Robinson D, Cappillino P, Hartnett R, Abellan P, Evans J, Browning N, Arslan I., 2014
Electron beam synthesis of metal and semiconductor nanoparticles using metal-organic frameworks as ordered precursors.
Jacobs BW, Houk RJ, Wong BM, Talin AA, Allendorf MD., Nanotechnology 22(37), 2011
PMID: 21852720
Self-assembled monolayers of thiolates on metals as a form of nanotechnology.
Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM., Chem. Rev. 105(4), 2005
PMID: 15826011

Kind M, Wöll C., 2009

Arslan H, Shekhah O, Wohlgemuth J, Franzreb M, Fischer R, Wöll C., 2011
Thin films of metal-organic frameworks.
Zacher D, Shekhah O, Woll C, Fischer RA., Chem Soc Rev 38(5), 2009
PMID: 19384445

Stavila V, Volponi J, Katzenmeyer A, Dixon M, Allendorf M., 2012
Formation and structure of copper(II) oxalate layers on carboxy-terminated self-assembled monolayers.
Schrader I, Wittig L, Richter K, Vieker H, Beyer A, Golzhauser A, Hartwig A, Swiderek P., Langmuir 30(40), 2014
PMID: 25225717

Paul J, Williams G, Hoffmann F., 2003

Scott K, Wieghardt K, Sykes A., 1973

Fujita J, Martell A, Nakamoto K., 1962

Millar G, Seakins J, Metson J, Bowmaker G, Cooney R., 1994

Yamada H, Person W., 1964

Pritchard J, Catterick T, Gupta R., 1975

Cecchet F, Pilling M, Hevesi L, Schergna S, Wong J, Clarkson G, Leigh D, Rudolf P., 2003

Seshadri K, Froyd K, Parikh A, Allara D, Lercel M, Craighead H., 1996

Poulston S, Parlett P, Stone P, Bowker M., 1996

Nickolov R, Donkova B, Milenova K, Mehandjiev D., 2006

Biesinger M, Payne B, Grosvenor A, Lau L, Gerson A, Smart R., 2010
Metallic copper nanostructures synthesized by a facile hydrothermal method.
Chen H, Lee JH, Kim YH, Shin DW, Park SC, Meng X, Yoo JB., J Nanosci Nanotechnol 10(1), 2010
PMID: 20352903
Control of chemical reactions and synthesis by low-energy electrons.
Bohler E, Warneke J, Swiderek P., Chem Soc Rev 42(24), 2013
PMID: 24088739

Seah M, Dench W., 1979

Swiderek P, Jolondz E, Bredehöft J, Borrmann T, Dölle C, Ott M, Schmüser C, Hartwig A, Danilov V, Wagner H-E., 2012
Selective terminal function modification of SAMs driven by low-energy electrons (0-15 eV).
Houplin J, Amiaud L, Humblot V, Martin I, Matar E, Azria R, Pradier CM, Lafosse A., Phys Chem Chem Phys 15(19), 2013
PMID: 23558312
NIST Mass Spec Data Center
Stein S., 0

Hartman K, Hisatsune I., 1966

Koppenol W, Rush J., 1987

Martin D, Cole R, Haq S., 2003
The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts.
Behrens M, Studt F, Kasatkin I, Kuhl S, Havecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Norskov JK, Schlogl R., Science 336(6083), 2012
PMID: 22517324

Bönicke I, Kirstein W, Thieme F., 1994

Fu S, Somorjai G., 1992

Pedersen D, Wang S., 2007

Vogt A, Han T, Beebe T., 1997

Asami K., 1976

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27547602
PubMed | Europe PMC

Suchen in

Google Scholar