Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations

Perez F, Vasco-Cardenas MF, Barreiro C (2016)
Journal of Proteomics 146: 172-183.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Perez, FernandoUniBi; Vasco-Cardenas, María F.; Barreiro, Carlos
Erscheinungsjahr
2016
Zeitschriftentitel
Journal of Proteomics
Band
146
Seite(n)
172-183
ISSN
1874-3919
Page URI
https://pub.uni-bielefeld.de/record/2904474

Zitieren

Perez F, Vasco-Cardenas MF, Barreiro C. Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations. Journal of Proteomics. 2016;146:172-183.
Perez, F., Vasco-Cardenas, M. F., & Barreiro, C. (2016). Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations. Journal of Proteomics, 146, 172-183. doi:10.1016/j.jprot.2016.06.030
Perez, Fernando, Vasco-Cardenas, María F., and Barreiro, Carlos. 2016. “Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations”. Journal of Proteomics 146: 172-183.
Perez, F., Vasco-Cardenas, M. F., and Barreiro, C. (2016). Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations. Journal of Proteomics 146, 172-183.
Perez, F., Vasco-Cardenas, M.F., & Barreiro, C., 2016. Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations. Journal of Proteomics, 146, p 172-183.
F. Perez, M.F. Vasco-Cardenas, and C. Barreiro, “Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations”, Journal of Proteomics, vol. 146, 2016, pp. 172-183.
Perez, F., Vasco-Cardenas, M.F., Barreiro, C.: Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations. Journal of Proteomics. 146, 172-183 (2016).
Perez, Fernando, Vasco-Cardenas, María F., and Barreiro, Carlos. “Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations”. Journal of Proteomics 146 (2016): 172-183.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous.
Barredo JL, García-Estrada C, Kosalkova K, Barreiro C., J Fungi (Basel) 3(3), 2017
PMID: 29371561

91 References

Daten bereitgestellt von Europe PubMed Central.

Taxonomical study of glutamic acid accumulating bacteria, Micrococcus glutamicus, nov. sp
Kinoshita, Bull. Agric. Chem. Soc. Jpn. 22(), 1958
Taxonomical studies on glutamic acid-producing bacteria
Abe, J. Gen. Appl. Microbiol. 13(), 1967
The biotechnological potential of Corynebacterium glutamicum, from umami to chemurgy
Vertès, 2013
Sustainable Ethanol: Biofuels
Goettemoeller, 2007
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626

Yukawa, 2007

Barreiro, 2015
Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “top 10” revisited
Bozell, Green Chem. 12(), 2010
Top Value Added Chemicals from Biomass Volume I — Results of Screening for Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals from Biomass Volume I: Results of Screening for Potential Candidates
Werpy, 2004
Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus.
Okabe M, Lies D, Kanamasa S, Park EY., Appl. Microbiol. Biotechnol. 84(4), 2009
PMID: 19629471
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 81(3), 2008
PMID: 18777022

Eggeling, 2005
Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506).
Barreiro C, Martinez-Castro M., Appl. Microbiol. Biotechnol. 98(2), 2013
PMID: 24272367
Improving microbial biogasoline production in Escherichia coli using tolerance engineering
Foo, mBio 5(), 2014
Long-term continuous adaptation of Escherichia coli to high succinate stress and transcriptome analysis of the tolerant strain
Kwon, JBIOSC 111(), 2011
Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum
Ventura, Microbiol. Mol. Biol. Rev. MMBR. 71(), 2007
Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences.
Verma M, Lal D, Kaur J, Saxena A, Kaur J, Anand S, Lal R., Res. Microbiol. 164(7), 2013
PMID: 23608518
Draft genome of Streptomyces tsukubaensis NRRL 18488, the producer of the clinically important immunosuppressant tacrolimus (FK506).
Barreiro C, Prieto C, Sola-Landa A, Solera E, Martinez-Castro M, Perez-Redondo R, Garcia-Estrada C, Aparicio JF, Fernandez-Martinez LT, Santos-Aberturas J, Salehi-Najafabadi Z, Rodriguez-Garcia A, Tauch A, Martin JF., J. Bacteriol. 194(14), 2012
PMID: 22740677
Complete genome sequence of 'Mycobacterium neoaurum' NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols.
Rodriguez-Garcia A, Fernandez-Alegre E, Morales A, Sola-Landa A, Lorraine J, Macdonald S, Dovbnya D, Smith MC, Donova M, Barreiro C., J. Biotechnol. 224(), 2016
PMID: 26988397
The genome stability in Corynebacterium species due to lack of the recombinational repair system.
Nakamura Y, Nishio Y, Ikeo K, Gojobori T., Gene 317(1-2), 2003
PMID: 14604803
Engineering Corynebacterium glutamicum for the production of pyruvate.
Wieschalka S, Blombach B, Eikmanns BJ., Appl. Microbiol. Biotechnol. 94(2), 2012
PMID: 22228312
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids
Vasco-Cárdenas, J. Proteome 85(), 2013
Pulsed-field gel electrophoresis analysis of the genome of amino acid producing corynebacteria: chromosome sizes and diversity of restriction patterns
Correia, Microbiol. Read. Engl. 140(Pt10), 1994
Molecular Cloning: A Laboratory Manual
Green, 2012
DNA sequencing with chain-terminating inhibitors.
Sanger F, Nicklen S, Coulson AR., Proc. Natl. Acad. Sci. U.S.A. 74(12), 1977
PMID: 271968
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036
BLAST+: architecture and applications.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL., BMC Bioinformatics 10(), 2009
PMID: 20003500
Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans.
Martinez-Gomariz M, Perumal P, Mekala S, Nombela C, Chaffin WL, Gil C., Proteomics 9(8), 2009
PMID: 19322777
Multiple significance tests: the Bonferroni method.
Bland JM, Altman DG., BMJ 310(6973), 1995
PMID: 7833759

Candiano, 2004
Fast-response proteomics by accelerated in-gel digestion of proteins.
Havlis J, Thomas H, Sebela M, Shevchenko A., Anal. Chem. 75(6), 2003
PMID: 12659189
The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases.
Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24225315
In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction
Bikandi, Bioinforma. Oxf. Engl. 20(), 2004
Ribosomal RNA and ribosomal proteins in corynebacteria.
Martin JF, Barreiro C, Gonzalez-Lavado E, Barriuso M., J. Biotechnol. 104(1-3), 2003
PMID: 12948628
Biochemistry of microbial itaconic acid production.
Steiger MG, Blumhoff ML, Mattanovich D, Sauer M., Front Microbiol 4(), 2013
PMID: 23420787
A genomic perspective on protein families.
Tatusov RL, Koonin EV, Lipman DJ., Science 278(5338), 1997
PMID: 9381173
The COG database: new developments in phylogenetic classification of proteins from complete genomes.
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV., Nucleic Acids Res. 29(1), 2001
PMID: 11125040

Tzvetkov, 2003
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism.
Auchter M, Cramer A, Huser A, Ruckert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ., J. Biotechnol. 154(2-3), 2010
PMID: 20620178
High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum
Jungwirth, Microbiol. Read. Engl. 159(), 2013
Genome plasticity and systems evolution in Streptomyces.
Zhou Z, Gu J, Li YQ, Wang Y., BMC Bioinformatics 13 Suppl 10(), 2012
PMID: 22759432
A 1.8-Mb-reduced Streptomyces clavuligerus genome: relevance for secondary metabolism and differentiation.
Alvarez-Alvarez R, Rodriguez-Garcia A, Martinez-Burgo Y, Robles-Reglero V, Santamarta I, Perez-Redondo R, Martin JF, Liras P., Appl. Microbiol. Biotechnol. 98(5), 2013
PMID: 24305736
Genome rearrangement and genetic instability in Streptomyces spp.
Birch A, Hausler A, Hutter R., J. Bacteriol. 172(8), 1990
PMID: 2198246
Genetic instability in Streptomyces
Dharmakingam, J. Biosci. 21(), 1996
Genetic instability of the Streptomyces chromosome.
Volff JN, Altenbuchner J., Mol. Microbiol. 27(2), 1998
PMID: 9484880
Emergence of related nontoxigenic Corynebacterium diphtheriae biotype mitis strains in Western Europe.
Funke G, Altwegg M, Frommelt L, von Graevenitz A., Emerging Infect. Dis. 5(3), 1999
PMID: 10341192
Identification of a new biotype of Actinomyces hyovaginalis in tissues of pigs during diagnostic bacteriological examination.
Storms V, Hommez J, Devriese LA, Vaneechoutte M, De Baere T, Baele M, Coopman R, Verschraegen G, Gillis M, Haesebrouck F., Vet. Microbiol. 84(1-2), 2002
PMID: 11731162
Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories.
Ioerger TR, Feng Y, Ganesula K, Chen X, Dobos KM, Fortune S, Jacobs WR Jr, Mizrahi V, Parish T, Rubin E, Sassetti C, Sacchettini JC., J. Bacteriol. 192(14), 2010
PMID: 20472797
Characterization of strains of Corynebacterium bovis.
Brooks BW, Barnum DA., Can. J. Comp. Med. 48(2), 1984
PMID: 6722650
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF., J. Bacteriol. 190(19), 2008
PMID: 18658264
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF., J. Bacteriol. 191(17), 2009
PMID: 19581365
Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives.
Yamamoto S, Sakai M, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 90(3), 2011
PMID: 21327408
Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J., Appl. Environ. Microbiol. 79(19), 2013
PMID: 23892752
Chassis organism from Corynebacterium glutamicum - a top-down approach to identify and delete irrelevant gene clusters
Unthan, Biotechnol. J. 1–12(), 2014
Biochemistry of microbial itaconic acid production.
Steiger MG, Blumhoff ML, Mattanovich D, Sauer M., Front Microbiol 4(), 2013
PMID: 23420787
Transcriptional analysis of the gap-pgk-tpi-ppc gene cluster of Corynebacterium glutamicum.
Schwinde JW, Thum-Schmitz N, Eikmanns BJ, Sahm H., J. Bacteriol. 175(12), 1993
PMID: 7685337
Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH.
Barriuso-Iglesias M, Barreiro C, Flechoso F, Martin JF., Microbiology (Reading, Engl.) 152(Pt 1), 2006
PMID: 16385111

Bott, 2003
Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum
Sawada, JBIOSC 113(), 2012
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rogner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
Disruption of genes for the enhanced biosynthesis of α-ketoglutarate in Corynebacterium glutamicum.
Jo JH, Seol HY, Lee YB, Kim MH, Hyun HH, Lee HH., Can. J. Microbiol. 58(3), 2012
PMID: 22356563
Microarray studies reveal a “differential response” to moderate or severe heat shock of the HrcA− and HspR− dependent systems in Corynebacterium glutamicum
Barreiro, Microbiol. Read. Engl. 155(), 2009
Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway metabolic engineering of Corynebacterium glutamicum for trehalose overproduction
Carpinelli, 2006

AUTHOR UNKNOWN, 0
Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes.
Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martin JF., BMC Microbiol. 8(), 2008
PMID: 19091079

AUTHOR UNKNOWN, 0
Bergey's Manual of Systematic Bacteriology
Goodfellow, 2012
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27371347
PubMed | Europe PMC

Suchen in

Google Scholar