Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY

Oldemeyer S, Franz S, Wenzel S, Essen L-O, Mittag M, Kottke T (2016)
Journal of Biological Chemistry 291(27): 14062-14071.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Oldemeyer, SabineUniBi; Franz, Sophie; Wenzel, Sandra; Essen, Lars-Oliver; Mittag, Maria; Kottke, TilmanUniBi
Erscheinungsjahr
2016
Zeitschriftentitel
Journal of Biological Chemistry
Band
291
Ausgabe
27
Seite(n)
14062-14071
ISSN
0021-9258, 1083-351X
Page URI
https://pub.uni-bielefeld.de/record/2904457

Zitieren

Oldemeyer S, Franz S, Wenzel S, Essen L-O, Mittag M, Kottke T. Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY. Journal of Biological Chemistry. 2016;291(27):14062-14071.
Oldemeyer, S., Franz, S., Wenzel, S., Essen, L. - O., Mittag, M., & Kottke, T. (2016). Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY. Journal of Biological Chemistry, 291(27), 14062-14071. doi:10.1074/jbc.m116.726976
Oldemeyer, S., Franz, S., Wenzel, S., Essen, L. - O., Mittag, M., and Kottke, T. (2016). Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY. Journal of Biological Chemistry 291, 14062-14071.
Oldemeyer, S., et al., 2016. Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY. Journal of Biological Chemistry, 291(27), p 14062-14071.
S. Oldemeyer, et al., “Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY”, Journal of Biological Chemistry, vol. 291, 2016, pp. 14062-14071.
Oldemeyer, S., Franz, S., Wenzel, S., Essen, L.-O., Mittag, M., Kottke, T.: Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY. Journal of Biological Chemistry. 291, 14062-14071 (2016).
Oldemeyer, Sabine, Franz, Sophie, Wenzel, Sandra, Essen, Lars-Oliver, Mittag, Maria, and Kottke, Tilman. “Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY”. Journal of Biological Chemistry 291.27 (2016): 14062-14071.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Structural changes within the bifunctional cryptochrome/photolyase CraCRY upon blue light excitation.
Franz-Badur S, Penner A, Straß S, von Horsten S, Linne U, Essen LO., Sci Rep 9(1), 2019
PMID: 31289290
Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm.
Lee W, Kasanmascheff M, Huynh M, Quartararo A, Costentin C, Bejenke I, Nocera DG, Bennati M, Tommos C, Stubbe J., Biochemistry 57(24), 2018
PMID: 29630358
Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii.
Franz S, Ignatz E, Wenzel S, Zielosko H, Putu EPGN, Maestre-Reyna M, Tsai MD, Yamamoto J, Mittag M, Essen LO., Nucleic Acids Res 46(15), 2018
PMID: 30032195
The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
Kutta RJ, Archipowa N, Scrutton NS., Phys Chem Chem Phys 20(45), 2018
PMID: 30417904
A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle.
Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, Prager K, Grossman A, Kottke T, Mittag M., Plant Physiol 174(1), 2017
PMID: 28360233
An Animal-Like Cryptochrome Controls the Chlamydomonas Sexual Cycle.
Zou Y, Wenzel S, Müller N, Prager K, Jung EM, Kothe E, Kottke T, Mittag M., Plant Physiol 174(3), 2017
PMID: 28468769
Determination of Radical-Radical Distances in Light-Active Proteins and Their Implication for Biological Magnetoreception.
Nohr D, Paulus B, Rodriguez R, Okafuji A, Bittl R, Schleicher E, Weber S., Angew Chem Int Ed Engl 56(29), 2017
PMID: 28627073
Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).
Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, Jenkins JW, Blaby-Haas CE, Helliwell KE, Chan CX, Marriage TN, Bhattacharya D, Klein AS, Badis Y, Brodie J, Cao Y, Collén J, Dittami SM, Gachon CMM, Green BR, Karpowicz SJ, Kim JW, Kudahl UJ, Lin S, Michel G, Mittag M, Olson BJSC, Pangilinan JL, Peng Y, Qiu H, Shu S, Singer JT, Smith AG, Sprecher BN, Wagner V, Wang W, Wang ZY, Yan J, Yarish C, Zäuner-Riek S, Zhuang Y, Zou Y, Lindquist EA, Grimwood J, Barry KW, Rokhsar DS, Schmutz J, Stiller JW, Grossman AR, Prochnik SE., Proc Natl Acad Sci U S A 114(31), 2017
PMID: 28716924
Single-Molecule Fluorescence Methods to Study Plant Hormone Signal Transduction Pathways.
Song S, Chang J, Ma C, Tan YW., Front Plant Sci 8(), 2017
PMID: 29163610

51 References

Daten bereitgestellt von Europe PubMed Central.

The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
The C termini of Arabidopsis cryptochromes mediate a constitutive light response.
Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR., Cell 103(5), 2000
PMID: 11114337
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock.
Etchegaray JP, Lee C, Wade PA, Reppert SM., Nature 421(6919), 2002
PMID: 12483227
Cryptochrome mediates light-dependent magnetosensitivity in Drosophila.
Gegear RJ, Casselman A, Waddell S, Reppert SM., Nature 454(7207), 2008
PMID: 18641630
Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome.
Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Essen LO., Proc. Natl. Acad. Sci. U.S.A. 105(52), 2008
PMID: 19074258
A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
Selby CP, Sancar A., Proc. Natl. Acad. Sci. U.S.A. 103(47), 2006
PMID: 17062752
A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts.
Todo T, Takemori H, Ryo H, Ihara M, Matsunaga T, Nikaido O, Sato K, Nomura T., Nature 361(6410), 1993
PMID: 8426655
Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore.
Zhang F, Scheerer P, Oberpichler I, Lamparter T, Krauß N., Proc. Natl. Acad. Sci. U.S.A. 110(18), 2013
PMID: 23589886
CryB from Rhodobacter sphaeroides: a unique class of cryptochromes with new cofactors.
Geisselbrecht Y, Fruhwirth S, Schroeder C, Pierik AJ, Klug G, Essen LO., EMBO Rep. 13(3), 2012
PMID: 22290493
A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.
Beel B, Prager K, Spexard M, Sasso S, Weiss D, Muller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M., Plant Cell 24(7), 2012
PMID: 22773746
The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A., J. Biol. Chem. 282(20), 2007
PMID: 17355959
Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M., J. Biol. Chem. 282(13), 2007
PMID: 17237227
Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase.
Yamada D, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Kandori H., Biochemistry 51(29), 2012
PMID: 22747528
A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E., J. Biol. Chem. 282(17), 2007
PMID: 17298948
Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans.
Aubert C, Mathis P, Eker AP, Brettel K., Proc. Natl. Acad. Sci. U.S.A. 96(10), 1999
PMID: 10318899
Intraprotein radical transfer during photoactivation of DNA photolyase.
Aubert C, Vos MH, Mathis P, Eker AP, Brettel K., Nature 405(6786), 2000
PMID: 10850720
Light-induced electron transfer in a cryptochrome blue-light photoreceptor.
Giovani B, Byrdin M, Ahmad M, Brettel K., Nat. Struct. Biol. 10(6), 2003
PMID: 12730688
Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
Langenbacher T, Immeln D, Dick B, Kottke T., J. Am. Chem. Soc. 131(40), 2009
PMID: 19754110
Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.
Brazard J, Usman A, Lacombat F, Ley C, Martin MM, Plaza P, Mony L, Heijde M, Zabulon G, Bowler C., J. Am. Chem. Soc. 132(13), 2010
PMID: 20222748
Discovery and functional analysis of a 4th electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6–4) photolyases
Müller P., Yamamoto J., Martin R., Iwai S., Brettel K.., 2015
Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E., FEBS J. 282(16), 2015
PMID: 25879256
Oxidation of tryptophan and N-methylindole by N, Br, and (SCN) radicals in light-water and heavy-water solutions - A pulse-radiolysis study
Solar S., Getoff N., Surdhar P., Armstrong D., Singh A.., 1991
UV optical absorption by protein radicals in cytochrome c oxidase.
Proshlyakov DA., Biochim. Biophys. Acta 1655(1-3), 2004
PMID: 15100043
Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor
Biskup T., Schleicher E., Okafuji A., Link G., Hitomi K., Getzoff E., Weber S.., 2009
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor.
Gauden M, van Stokkum IH, Key JM, Luhrs DCh, van Grondelle R, Hegemann P, Kennis JT., Proc. Natl. Acad. Sci. U.S.A. 103(29), 2006
PMID: 16829579
Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
Kondoh M, Shiraishi C, Muller P, Ahmad M, Hitomi K, Getzoff ED, Terazima M., J. Mol. Biol. 413(1), 2011
PMID: 21875594
Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor.
Partch CL, Clarkson MW, Ozgur S, Lee AL, Sancar A., Biochemistry 44(10), 2005
PMID: 15751956
Photochemical tyrosine oxidation in the structurally well-defined α3Y protein: proton-coupled electron transfer and a long-lived tyrosine radical.
Glover SD, Jorge C, Liang L, Valentine KG, Hammarstrom L, Tommos C., J. Am. Chem. Soc. 136(40), 2014
PMID: 25121576
The function and characteristics of tyrosyl radical cofactors.
Hoganson CW, Tommos C., Biochim. Biophys. Acta 1655(1-3), 2004
PMID: 15100023
Tyrosyl radicals in photosystem II.
Pujols-Ayala I, Barry BA., Biochim. Biophys. Acta 1655(1-3), 2004
PMID: 15100033
Mechanism of tyrosine D oxidation in Photosystem II.
Saito K, Rutherford AW, Ishikita H., Proc. Natl. Acad. Sci. U.S.A. 110(19), 2013
PMID: 23599284
The τ-nitrogen of D2 histidine 189 is the hydrogen bond donor to the tyrosine radical Y of photosystem II
Campbell K., Peloquin J., Diner B., Tang X., Chisholm D., Britt R.., 1997
High-frequency EPR and pulsed Q-Band ENDOR studies on the origin of the hydrogen bond in tyrosyl radicals of ribonucleotide reductase R2 proteins from mouse and herpes simplex virus type 1
van P., Willems J., Schmidt P., Potsch S., Barra A., Hagen W., Hoffman B., Andersson K., Graslund A.., 1998
Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase.
Ito N, Phillips SE, Stevens C, Ogel ZB, McPherson MJ, Keen JN, Yadav KD, Knowles PF., Nature 350(6313), 1991
PMID: 2002850
Flavin reduction activates Drosophila cryptochrome.
Vaidya AT, Top D, Manahan CC, Tokuda JM, Zhang S, Pollack L, Young MW, Crane BR., Proc. Natl. Acad. Sci. U.S.A. 110(51), 2013
PMID: 24297896
Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase.
Minnihan EC, Nocera DG, Stubbe J., Acc. Chem. Res. 46(11), 2013
PMID: 23730940
Structural biochemistry of a fungal LOV domain photoreceptor reveals an evolutionarily conserved pathway integrating light and oxidative stress.
Lokhandwala J, Hopkins HC, Rodriguez-Iglesias A, Dattenbock C, Schmoll M, Zoltowski BD., Structure 23(1), 2014
PMID: 25533487
Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes.
Hitomi K, DiTacchio L, Arvai AS, Yamamoto J, Kim ST, Todo T, Tainer JA, Iwai S, Panda S, Getzoff ED., Proc. Natl. Acad. Sci. U.S.A. 106(17), 2009
PMID: 19359474

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27189948
PubMed | Europe PMC

Suchen in

Google Scholar