Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum

Henke NA, Heider S, Peters-Wendisch P, Wendisch VF (2016)
Marine Drugs 14(7): 124.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.39 MB
Abstract / Bemerkung
Astaxanthin, a red C40 carotenoid, is one of the most abundant marine carotenoids. It is currently used as a food and feed additive in a hundred-ton scale and is furthermore an attractive component for pharmaceutical and cosmetic applications with antioxidant activities. Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin, is an industrially relevant microorganism used in the million-ton amino acid production. In this work, engineering of a genome-reduced C. glutamicum with optimized precursor supply for astaxanthin production is described. This involved expression of heterologous genes encoding for lycopene cyclase CrtY, β-carotene ketolase CrtW, and hydroxylase CrtZ. For balanced expression of crtW and crtZ their translation initiation rates were varied in a systematic approach using different ribosome binding sites, spacing, and translational start codons. Furthermore, β-carotene ketolases and hydroxylases from different marine bacteria were tested with regard to efficient astaxanthin production in C. glutamicum. In shaking flasks, the C. glutamicum strains developed here overproduced astaxanthin with volumetric productivities up to 0.4 mg·L−1·h−1 which are competitive with current algae-based production. Since C. glutamicum can grow to high cell densities of up to 100 g cell dry weight (CDW)·L−1, the recombinant strains developed here are a starting point for astaxanthin production by C. glutamicum.
Stichworte
astaxanthin production; carotenoids; genome-reduced Corynebacterium glutamicum; systematic approach; metabolic engineering
Erscheinungsjahr
2016
Zeitschriftentitel
Marine Drugs
Band
14
Ausgabe
7
Art.-Nr.
124
ISSN
1660-3397
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2904325

Zitieren

Henke NA, Heider S, Peters-Wendisch P, Wendisch VF. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs. 2016;14(7): 124.
Henke, N. A., Heider, S., Peters-Wendisch, P., & Wendisch, V. F. (2016). Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs, 14(7), 124. doi:10.3390/md14070124
Henke, Nadja Alina, Heider, Sabine, Peters-Wendisch, Petra, and Wendisch, Volker F. 2016. “Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum”. Marine Drugs 14 (7): 124.
Henke, N. A., Heider, S., Peters-Wendisch, P., and Wendisch, V. F. (2016). Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs 14:124.
Henke, N.A., et al., 2016. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs, 14(7): 124.
N.A. Henke, et al., “Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum”, Marine Drugs, vol. 14, 2016, : 124.
Henke, N.A., Heider, S., Peters-Wendisch, P., Wendisch, V.F.: Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs. 14, : 124 (2016).
Henke, Nadja Alina, Heider, Sabine, Peters-Wendisch, Petra, and Wendisch, Volker F. “Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum”. Marine Drugs 14.7 (2016): 124.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:40:39Z
MD5 Prüfsumme
bc6a49e8f11ecea51679f276e47ff178


10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identifying and engineering the ideal microbial terpenoid production host.
Moser S, Pichler H., Appl Microbiol Biotechnol 103(14), 2019
PMID: 31129740
Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Wichmann J, Baier T, Frohwitter J, Lauersen KJ, Risse JM, Peters-Wendisch P, Kruse O, Wendisch VF., Genes (Basel) 9(4), 2018
PMID: 29673223
Food Modulation Controls Astaxanthin Accumulation in Eggs of the Sea Urchin Arbacia lixula.
Galasso C, Orefice I, Toscano A, Vega Fernández T, Musco L, Brunet C, Sansone C, Cirino P., Mar Drugs 16(6), 2018
PMID: 29843412
Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering.
Jin J, Wang Y, Yao M, Gu X, Li B, Liu H, Ding M, Xiao W, Yuan Y., Biotechnol Biofuels 11(), 2018
PMID: 30159030
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Pérez-García F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum.
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P., Front Microbiol 8(), 2017
PMID: 28484430
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28552565

86 References

Daten bereitgestellt von Europe PubMed Central.

Carotenoid actions and their relation to health and disease.
Krinsky NI, Johnson EJ., Mol. Aspects Med. 26(6), 2005
PMID: 16309738
The Global Market for Carotenoids
AUTHOR UNKNOWN, 0
Well-Known Antioxidants and Newcomers in Sport Nutrition: Coenzyme Q10, Quercetin, Resveratrol, Pterostilbene, Pycnogenol and Astaxanthin
Belviranli M., Okudan N.., 2015
Antihypertensive and neuroprotective effects of astaxanthin in experimental animals.
Hussein G, Nakamura M, Zhao Q, Iguchi T, Goto H, Sankawa U, Watanabe H., Biol. Pharm. Bull. 28(1), 2005
PMID: 15635162
Characterisation of the C50 carotenoids produced by strains of the cheese-ripening bacterium Arthrobacter arilaitensis
Giuffrida D, Christophe Monnet , Emmanuelle Girard-Valenciennes , Francesco Cacciola , Laurent Dufosse , Mireille Fouillaud , Nuthathai Sutthiwong , Paola Donato , Paola Dugo , Yanis Caro , Yves Le Mao ., Int. Dairy J. 55(), 2016
PMID: IND605266467
A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes.
Furubayashi M, Ikezumi M, Takaichi S, Maoka T, Hemmi H, Ogawa T, Saito K, Tobias AV, Umeno D., Nat Commun 6(), 2015
PMID: 26168783
A C35 carotenoid biosynthetic pathway.
Umeno D, Arnold FH., Appl. Environ. Microbiol. 69(6), 2003
PMID: 12788765
Astaxanthin in cardiovascular health and disease.
Fassett RG, Coombes JS., Molecules 17(2), 2012
PMID: 22349894
Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo.
Ohgami K, Shiratori K, Kotake S, Nishida T, Mizuki N, Yazawa K, Ohno S., Invest. Ophthalmol. Vis. Sci. 44(6), 2003
PMID: 12766075
Effect of Astaxanthin Supplementation on Salivary IgA, Oxidative Stress, and Inflammation in Young Soccer Players.
Baralic I, Andjelkovic M, Djordjevic B, Dikic N, Radivojevic N, Suzin-Zivkovic V, Radojevic-Skodric S, Pejic S., Evid Based Complement Alternat Med 2015(), 2015
PMID: 26167194
An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis.
Li J, Zhu D, Niu J, Shen S, Wang G., Biotechnol. Adv. 29(6), 2011
PMID: 21497650
In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli.
Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T., Biotechnol. Bioeng. 111(7), 2014
PMID: 24473754
Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement
Capelli B., Bagchi D., Cysewski G.., 2013
Metabolic engineering towards biotechnological production of carotenoids in microorganisms.
Lee PC, Schmidt-Dannert C., Appl. Microbiol. Biotechnol. 60(1-2), 2002
PMID: 12382037

George B., Synnove L.J., Hanspeter P.., 2004
From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant
Cutzu R, Coi A, Rosso F, Bardi L, Ciani M, Budroni M, Zara G, Zara S, Mannazzu I., World J. Microbiol. Biotechnol. 29(6), 2013
PMID: IND500664511
Studies on the amino acid fermentation. Production of L-glutamic acid by various microorganisms
Kinoshita S., Udaka S., Shimono M.., 1957
Metabolic engineering of Corynebacterium glutamicum for glycolate production.
Zahoor A, Otten A, Wendisch VF., J. Biotechnol. 192 Pt B(), 2014
PMID: 24486442
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J. Biotechnol. 191(), 2014
PMID: 24910970
Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids.
Heider SA, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T., Appl. Microbiol. Biotechnol. 98(10), 2014
PMID: 24687754
Glutamic acid
Kinoshita S., Tanaka K.., 1972
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour. Technol. 145(), 2013
PMID: 23562176
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl. Microbiol. Biotechnol. 92(5), 2011
PMID: 21796382
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24668244
Glutamate production from β-glucan using endoglucanase-secreting Corynebacterium glutamicum.
Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A., Appl. Microbiol. Biotechnol. 90(3), 2011
PMID: 21305281
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol. 12(), 2012
PMID: 22963379
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl. Microbiol. Biotechnol. 98(3), 2013
PMID: 24270893
IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., FEBS J. 281(21), 2014
PMID: 25181035
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria.
Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M, Salis HM., Mol. Syst. Biol. 10(), 2014
PMID: 24952589
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
LdrP, a cAMP receptor protein/FNR family transcriptional regulator, serves as a positive regulator for the light-inducible gene cluster in the megaplasmid of Thermus thermophilus.
Takano H, Agari Y, Hagiwara K, Watanabe R, Yamazaki R, Beppu T, Shinkai A, Ueda K., Microbiology (Reading, Engl.) 160(Pt 12), 2014
PMID: 25294106
Role and Function of LitR, an Adenosyl B12-Bound Light-Sensitive Regulator of Bacillus megaterium QM B1551, in Regulation of Carotenoid Production.
Takano H, Mise K, Hagiwara K, Hirata N, Watanabe S, Toriyabe M, Shiratori-Takano H, Ueda K., J. Bacteriol. 197(14), 2015
PMID: 25917914
Comparative analysis of β-carotene hydroxylase genes for astaxanthin biosynthesis.
Scaife MA, Ma CA, Ninlayarn T, Wright PC, Armenta RE., J. Nat. Prod. 75(6), 2012
PMID: 22616944
BIOLOGICAL PROPERTIES AND CLASSIFICATION OF THE CAULOBACTER GROUP.
POINDEXTER JS., Bacteriol Rev 28(), 1964
PMID: 14220656
Astaxanthin dirhamnoside, a new astaxanthin derivative produced by a radio-tolerant bacterium, Sphingomonas astaxanthinifaciens.
Asker D, Amano S, Morita K, Tamura K, Sakuda S, Kikuchi N, Furihata K, Matsufuji H, Beppu T, Ueda K., J. Antibiot. 62(7), 2009
PMID: 19557030
High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors.
Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stockmann C, Seletzky J, Buchs J., J. Biotechnol. 132(2), 2007
PMID: 17681630
On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis.
Aflalo C, Meshulam Y, Zarka A, Boussiba S., Biotechnol. Bioeng. 98(1), 2007
PMID: 17318905
In vitro characterization of astaxanthin biosynthetic enzymes.
Fraser PD, Miura Y, Misawa N., J. Biol. Chem. 272(10), 1997
PMID: 9045623
Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis.
Dong S, Huang Y, Zhang R, Wang S, Liu Y., ScientificWorldJournal 2014(), 2014
PMID: 24574909
Xanthophyllomyces dendrorhous for the industrial production of astaxanthin.
Rodriguez-Saiz M, de la Fuente JL, Barredo JL., Appl. Microbiol. Biotechnol. 88(3), 2010
PMID: 20711573
Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous.
Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Humbelin M, Sandmann G, Schrader J., Appl. Microbiol. Biotechnol. 89(3), 2010
PMID: 21046372
Optimization of acidic extraction of astaxanthin from Phaffia rhodozyma.
Ni H, Chen QH, He GQ, Wu GB, Yang YF., J Zhejiang Univ Sci B 9(1), 2008
PMID: 18196613
The arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese.
Monnet C, Loux V, Gibrat JF, Spinnler E, Barbe V, Vacherie B, Gavory F, Gourbeyre E, Siguier P, Chandler M, Elleuch R, Irlinger F, Vallaeys T., PLoS ONE 5(11), 2010
PMID: 21124797
The MerR family of transcriptional regulators.
Brown NL, Stoyanov JV, Kidd SP, Hobman JL., FEMS Microbiol. Rev. 27(2-3), 2003
PMID: 12829265
Commercial potential for Haematococcus microalgae as a natural source of astaxanthin.
Lorenz RT, Cysewski GR., Trends Biotechnol. 18(4), 2000
PMID: 10740262
Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations.
Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K., Appl. Microbiol. Biotechnol. 91(1), 2011
PMID: 21567179
Astaxanthin over-Producing Strains of Phaffia Rhodozyma, Methods for their Cultivation, and their Use in Animal Feeds
Jacobson G., Jolly S., Sedmak J., Skatrud T., Wasileski J.., 1999
Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J., Appl. Environ. Microbiol. 79(19), 2013
PMID: 23892752
Experiments
Eggeling L., Reyes O.., 2005
Taxonomical studies on glutamic acid producing bacteria
Abe S., Takayarna K., Kinoshita S.., 1967
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli.
Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K., J. Bacteriol. 172(12), 1990
PMID: 2254247
Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter.
Abraham WR, Strompl C, Meyer H, Lindholst S, Moore ER, Christ R, Vancanneyt M, Tindall BJ, Bennasar A, Smit J, Tesar M., Int. J. Syst. Bacteriol. 49 Pt 3(), 1999
PMID: 10425763
[Bacterial flora of the medicinal leech].
BUSING KH, DOLL W, FREYTAG K., Arch Mikrobiol 19(1), 1953
PMID: 13159237
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586

Sambrook J., Russell D.., 2001

AUTHOR UNKNOWN, 2005
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27376307
PubMed | Europe PMC

Suchen in

Google Scholar