Somatotopic map of the active electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii

Hollmann V, Hofmann V, Engelmann J (2016)
Journal of Comparative Neurology 524(12): 2479-2491.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In many vertebrates parallel processing in topographically ordered maps is essential for efficient sensory processing. In the active electrosensory pathway of mormyrids afferent input is processed in two parallel somatotopically ordered hindbrain maps of the electrosensory lateral line lobe (ELL), the dorsolateral zone (DLZ), and the medial zone (MZ). Here phase and amplitude modulations of the self-generated electric field were processed separately. Behavioral data indicates that this information must be merged for the sensory system to categorically distinguish capacitive and resistive properties of objects. While projections between both zones of the ELL have been found, the available physiological data suggests that this merging takes place in the midbrain torus semicircularis (TS). Previous anatomical data indicate that the detailed somatotopic representation present in the ELL is lost in the nucleus lateralis (NL) of the TS, while a rough rostrocaudal mapping is maintained. In our study we investigated the projections from the hindbrain to the midbrain in more detail, using tracer injections. Our data reveals that afferents from both maps of the ELL terminate in a detailed somatotopic manner within the midbrain NL. Furthermore, we provide data indicating that phase and amplitude information may indeed be processed jointly in the NL. J. Comp. Neurol. 524:2479-2491, 2016. 2016 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc.
Stichworte
electric fish; electrolocation; parallel sensory processing; topographic map; torus semicircularis
Erscheinungsjahr
2016
Zeitschriftentitel
Journal of Comparative Neurology
Band
524
Ausgabe
12
Seite(n)
2479-2491
ISSN
0021-9967
eISSN
1096-9861
Page URI
https://pub.uni-bielefeld.de/record/2904264

Zitieren

Hollmann V, Hofmann V, Engelmann J. Somatotopic map of the active electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii. Journal of Comparative Neurology. 2016;524(12):2479-2491.
Hollmann, V., Hofmann, V., & Engelmann, J. (2016). Somatotopic map of the active electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii. Journal of Comparative Neurology, 524(12), 2479-2491. doi:10.1002/cne.23963
Hollmann, Vanessa, Hofmann, Volker, and Engelmann, Jacob. 2016. “Somatotopic map of the active electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii”. Journal of Comparative Neurology 524 (12): 2479-2491.
Hollmann, V., Hofmann, V., and Engelmann, J. (2016). Somatotopic map of the active electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii. Journal of Comparative Neurology 524, 2479-2491.
Hollmann, V., Hofmann, V., & Engelmann, J., 2016. Somatotopic map of the active electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii. Journal of Comparative Neurology, 524(12), p 2479-2491.
V. Hollmann, V. Hofmann, and J. Engelmann, “Somatotopic map of the active electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii”, Journal of Comparative Neurology, vol. 524, 2016, pp. 2479-2491.
Hollmann, V., Hofmann, V., Engelmann, J.: Somatotopic map of the active electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii. Journal of Comparative Neurology. 524, 2479-2491 (2016).
Hollmann, Vanessa, Hofmann, Volker, and Engelmann, Jacob. “Somatotopic map of the active electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii”. Journal of Comparative Neurology 524.12 (2016): 2479-2491.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing.
Zeymer M, von der Emde G, Wullimann MF., Front Neuroanat 12(), 2018
PMID: 30327593

49 References

Daten bereitgestellt von Europe PubMed Central.

Functional foveae in an electrosensory system.
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K., J. Comp. Neurol. 511(3), 2008
PMID: 18803238

Bass, 1986
Mormyromas electroreceptor organs and their afferent fibers in mormurid fish
Bell, III. physiological differences between two morphological types of fibers. J Neurobiol 61(), 1990

Bell, 1986
Central connections of the posterior lateral line lobe in mormyrid fish.
Bell CC, Finger TE, Russell CJ., Exp Brain Res 42(1), 1981
PMID: 6163655
Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology.
Bell CC, Zakon H, Finger TE., J. Comp. Neurol. 286(3), 1989
PMID: 2768566

Fechner, 2008
Electrosensory pathways to the valvula cerebelli in mormyrid fish.
Finger TE, Bell CC, Russell CJ., Exp Brain Res 42(1), 1981
PMID: 6163654
Projection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
Grant K, Meek J, Sugawara Y, Veron M, Denizot JP, Hafmans TG, Serrier J, Szabo T., J. Comp. Neurol. 375(1), 1996
PMID: 8913891

Haugedé-Carré, The mesencephalic exterolateral posterior nucleus of the mormyrid fish Bryenomyrus niger: efferent connections studied by the HRP method 178(), 1979
Labeling of electroreceptive afferents in a gymnotoid fish by intracellular injection of HRP: the mystery of multiple maps
Heiligenberg, J Comp Physiol A 148(), 1982
Topographic maps are fundamental to sensory processing.
Kaas JH., Brain Res. Bull. 44(2), 1997
PMID: 9292198
A midbrain responses to electroreceptive input in catfish
Knudsen, Neurobiology 106(), 1976
Distinct auditory and lateral line nuclei in the midbrain catfishes.
Knudsen EI., J. Comp. Neurol. 173(3), 1977
PMID: 856890
Neural maps in the electrosensory system of weakly electric fish.
Krahe R, Maler L., Curr. Opin. Neurobiol. 24(1), 2013
PMID: 24492073
Temporal processing across multiple topographic maps in the electrosensory system.
Krahe R, Bastian J, Chacron MJ., J. Neurophysiol. 100(2), 2008
PMID: 18509073

Lundt, 2011
The mode of operation of the electric receptors in Gymnarchus niloticus
Machin, Exp Biol 37(), 1960
Receptive field organization across multiple electrosensory maps
Maler, I. Columnar organization and estimation of receptive field size. J Comp Neurol 516(), 2009
Receptive field organization across multiple electrosensory maps
Maler, II. Computational analysis of the effects of receptive field size on prey localization. J Comp Neurol 516(), 2009
The central connections of the anterior lateral line nerve of Gnathonemus petersii.
Maler L, Karten HJ, Bennett MV., J. Comp. Neurol. 151(1), 1973
PMID: 4731303
Efferent projections of the posterior lateral line lobe in gymnotiform fish.
Maler L, Sas E, Carr CE, Matsubara J., J. Comp. Neurol. 211(2), 1982
PMID: 7174887

Meek, 1998
Distribution of dopamine immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii.
Meek J, Joosten HW, Steinbusch HW., J. Comp. Neurol. 281(3), 1989
PMID: 2703553
Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
Meek J, Grant K, Sugawara Y, Hafmans TG, Veron M, Denizot JP., J. Comp. Neurol. 375(1), 1996
PMID: 8913892
Myelinated dendrites in the mormyrid electrosensory lobe.
Meek J, Hafmans TG, Han V, Bell CC, Grant K., J. Comp. Neurol. 431(3), 2001
PMID: 11170004
Dye coupling without gap junctions suggests excitatory connections of gamma-aminobutyric acidergic neurons.
Meek J, Kirchberg G, Grant K, von der Emde G., J. Comp. Neurol. 468(2), 2004
PMID: 14648676
A sensory brain map for each behavior?
Metzner W, Juranek J., Proc. Natl. Acad. Sci. U.S.A. 94(26), 1997
PMID: 9405693
Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish
Shumway, I. Physiological differences. J Neurosci 9(), 1989
A latency-change mechanism involved in sensory coding of electric fish (mormyrids)
Szabo, Physiol Behav 2(), 1967
Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii
Emde, J Comp Physiol A 167(), 1990
The sensing of electrical capacitances by weakly electric mormyrid fish: effects of water conductivity
Emde, J Exp Biol 173(), 1993
Responses of cells in the mormyrid electrosensory lobe to EODs with distorted waveforms: implications for capacitance detection
Emde, J Comp Physiol A 175(), 1994
Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii
Emde, J Comp Physiol A 171(), 1992
Extreme phase sensitivity of afferents which innervate mormyromast electroreceptors
Emde, Naturwissenschaften 79(), 1992
Waveform tuning of electroreceptor cells in the weakly electric fish, Gnathonemus petersii
Emde, J Comp Physiol A 181(), 1997
Electrolocation of capacitive objects in four species of pulse-type weakly electric fish I
Emde, Discrimination performance. Ethology 91(), 1992
Behavioral detection of electric signal waveform distortion in the weakly electric fish, Gnathonemus petersii
Emde, J Comp Physiol A 177(), 1995
A physiologically-inspired model of numerical classification based on graded stimulus coding.
Pearson J, Roitman JD, Brannon EM, Platt ML, Raghavachari S., Front Behav Neurosci 4(), 2010
PMID: 20126432
Are topographic maps fundamental to sensory processing?
Weinberg RJ., Brain Res. Bull. 44(2), 1997
PMID: 9292199

Zakon, 1986
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26780193
PubMed | Europe PMC

Suchen in

Google Scholar