Arithmetic Groups, Base Change, and Representation Growth

Avni N, Klopsch B, Onn U, Voll C (2016)
Geometric and Functional Analysis 26(1): 67-135.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor/in
; ; ;
Abstract / Bemerkung
Consider an arithmetic group , where is an affine group scheme with connected, simply connected absolutely almost simple generic fiber, defined over the ring of S-integers O (S) of a number field K with respect to a finite set of places S. For each , let denote the number of irreducible complex representations of of dimension at most n. The degree of representation growth is finite if and only if has the weak Congruence Subgroup Property. We establish that for every with the weak Congruence Subgroup Property the invariant is already determined by the absolute root system of . To show this we demonstrate that the abscissae of convergence of the representation zeta functions of such groups are invariant under base extensions . We deduce from our result a variant of a conjecture of Larsen and Lubotzky regarding the representation growth of irreducible lattices in higher rank semi-simple groups. In particular, this reduces Larsen and Lubotzky's conjecture to Serre's conjecture on the weak Congruence Subgroup Property, which it refines.
Erscheinungsjahr
Zeitschriftentitel
Geometric and Functional Analysis
Band
26
Ausgabe
1
Seite(n)
67-135
ISSN
eISSN
PUB-ID

Zitieren

Avni N, Klopsch B, Onn U, Voll C. Arithmetic Groups, Base Change, and Representation Growth. Geometric and Functional Analysis. 2016;26(1):67-135.
Avni, N., Klopsch, B., Onn, U., & Voll, C. (2016). Arithmetic Groups, Base Change, and Representation Growth. Geometric and Functional Analysis, 26(1), 67-135. doi:10.1007/s00039-016-0359-6
Avni, N., Klopsch, B., Onn, U., and Voll, C. (2016). Arithmetic Groups, Base Change, and Representation Growth. Geometric and Functional Analysis 26, 67-135.
Avni, N., et al., 2016. Arithmetic Groups, Base Change, and Representation Growth. Geometric and Functional Analysis, 26(1), p 67-135.
N. Avni, et al., “Arithmetic Groups, Base Change, and Representation Growth”, Geometric and Functional Analysis, vol. 26, 2016, pp. 67-135.
Avni, N., Klopsch, B., Onn, U., Voll, C.: Arithmetic Groups, Base Change, and Representation Growth. Geometric and Functional Analysis. 26, 67-135 (2016).
Avni, Nir, Klopsch, Benjamin, Onn, Uri, and Voll, Christopher. “Arithmetic Groups, Base Change, and Representation Growth”. Geometric and Functional Analysis 26.1 (2016): 67-135.