Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient

Bringoux L, Scotto di Cesare C, Borel L, Macaluso T, Sarlegna FR (2016)
Frontiers in Human Neuroscience 10: 181.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bringoux, Lionel; Scotto di Cesare, CecileUniBi; Borel, Liliane; Macaluso, Thomas; Sarlegna, Fabrice R.
Abstract / Bemerkung
The present study aimed at investigating the consequences of a massive loss of somatosensory inputs on the perception of spatial orientation. The occurrence of possible compensatory processes for external (i.e., object) orientation perception and self-orientation perception was examined by manipulating visual and/or vestibular cues. To that aim, we compared perceptual responses of a deafferented patient (GL) with respect to age-matched Controls in two tasks involving gravity-related judgments. In the first task, subjects had to align a visual rod with the gravitational vertical (i.e., Subjective Visual Vertical: SVV) when facing a tilted visual frame in a classic Rod-and-Frame Test. In the second task, subjects had to report whether they felt tilted when facing different visuo-postural conditions which consisted in very slow pitch tilts of the body and/or visual surroundings away from vertical. Results showed that, much more than Controls, the deafferented patient was fully dependent on spatial cues issued from the visual frame when judging the SVV. On the other hand, the deafferented patient did not rely at all on visual cues for self-tilt detection. Moreover, the patient never reported any sensation of tilt up to 18 degrees contrary to Controls, hence showing that she did not rely on vestibular (i.e., otoliths) signals for the detection of very slow body tilts either. Overall, this study demonstrates that a massive somatosensory deficit substantially impairs the perception of spatial orientation, and that the use of the remaining sensory inputs available to a deafferented patient differs regarding whether the judgment concerns external vs. self-orientation.
Stichworte
spatial orientation; body tilt; multisensory integration; deafferented; patient
Erscheinungsjahr
2016
Zeitschriftentitel
Frontiers in Human Neuroscience
Band
10
Art.-Nr.
181
ISSN
1662-5161
Page URI
https://pub.uni-bielefeld.de/record/2904103

Zitieren

Bringoux L, Scotto di Cesare C, Borel L, Macaluso T, Sarlegna FR. Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient. Frontiers in Human Neuroscience. 2016;10: 181.
Bringoux, L., Scotto di Cesare, C., Borel, L., Macaluso, T., & Sarlegna, F. R. (2016). Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient. Frontiers in Human Neuroscience, 10, 181. doi:10.3389/fnhum.2016.00181
Bringoux, Lionel, Scotto di Cesare, Cecile, Borel, Liliane, Macaluso, Thomas, and Sarlegna, Fabrice R. 2016. “Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient”. Frontiers in Human Neuroscience 10: 181.
Bringoux, L., Scotto di Cesare, C., Borel, L., Macaluso, T., and Sarlegna, F. R. (2016). Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient. Frontiers in Human Neuroscience 10:181.
Bringoux, L., et al., 2016. Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient. Frontiers in Human Neuroscience, 10: 181.
L. Bringoux, et al., “Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient”, Frontiers in Human Neuroscience, vol. 10, 2016, : 181.
Bringoux, L., Scotto di Cesare, C., Borel, L., Macaluso, T., Sarlegna, F.R.: Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient. Frontiers in Human Neuroscience. 10, : 181 (2016).
Bringoux, Lionel, Scotto di Cesare, Cecile, Borel, Liliane, Macaluso, Thomas, and Sarlegna, Fabrice R. “Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient”. Frontiers in Human Neuroscience 10 (2016): 181.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Somatosensory Loss Influences the Adoption of Self-Centered Versus Decentered Perspectives.
Arnold G, Sarlegna FR, Fernandez LG, Auvray M., Front Psychol 10(), 2019
PMID: 30914989
A New and Faster Test to Assess Vestibular Perception.
Dupuits B, Pleshkov M, Lucieer F, Guinand N, Pérez Fornos A, Guyot JP, Kingma H, van de Berg R., Front Neurol 10(), 2019
PMID: 31312176
Does Proprioception Influence Human Spatial Cognition? A Study on Individuals With Massive Deafferentation.
Renault AG, Auvray M, Parseihian G, Miall RC, Cole J, Sarlegna FR., Front Psychol 9(), 2018
PMID: 30131736
[Pilot study: Determination of the subjective trunk vertical in upright head position].
Hölzl M, Lappat A, Hülse R, Biesinger E, Arens C, Voß L., HNO 66(9), 2018
PMID: 30022256
Postural Sway, Balance Confidence, and Fear of Falling in Women With Knee Osteoarthritis in Comparison to Matched Controls.
Taglietti M, Dela Bela LF, Dias JM, Pelegrinelli ARM, Nogueira JF, Batista Júnior JP, Carvalho RGDS, McVeigh JG, Facci LM, Moura FA, Cardoso JR., PM R 9(8), 2017
PMID: 27876656
Tissue engineering the mechanosensory circuit of the stretch reflex arc with human stem cells: Sensory neuron innervation of intrafusal muscle fibers.
Guo X, Colon A, Akanda N, Spradling S, Stancescu M, Martin C, Hickman JJ., Biomaterials 122(), 2017
PMID: 28129596
Head Stability and Head-Trunk Coordination in Horseback Riders: The Contribution of Visual Information According to Expertise.
Olivier A, Faugloire E, Lejeune L, Biau S, Isableu B., Front Hum Neurosci 11(), 2017
PMID: 28194100
Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control.
Mehrabi N, Sharif Razavian R, Ghannadi B, McPhee J., Front Comput Neurosci 10(), 2016
PMID: 28133449

66 References

Daten bereitgestellt von Europe PubMed Central.

The role of somatosensory input for the perception of verticality.
Anastasopoulos D, Bronstein A, Haslwanter T, Fetter M, Dichgans J., Ann. N. Y. Acad. Sci. 871(), 1999
PMID: 10372086
Neurons compute internal models of the physical laws of motion.
Angelaki DE, Shaikh AG, Green AM, Dickman JD, Angelaki DE., Nature 430(6999), 2004
PMID: 15282606
Tilted perception of the subjective 'upright' in unilateral loss of vestibular function.
Aoki M, Ito Y, Burchill P, Brookes GB, Gresty MA., Am J Otol 20(6), 1999
PMID: 10565718
The state of the art of sensory substitution.
Auvray M, Harris LR., Multisens Res 27(5-6), 2014
PMID: 25693296
Increased visual dependence in Parkinson's disease.
Azulay JP, Mesure S, Amblard B, Pouget J., Percept Mot Skills 95(3 Pt 2), 2002
PMID: 12578250
Vestibular perception is slow: a review.
Barnett-Cowan M., Multisens Res 26(4), 2013
PMID: 24319930
Multisensory determinants of orientation perception: task-specific sex differences.
Barnett-Cowan M, Dyde RT, Thompson C, Harris LR., Eur. J. Neurosci. 31(10), 2010
PMID: 20584195
Humans use internal models to construct and update a sense of verticality.
Barra J, Marquer A, Joassin R, Reymond C, Metge L, Chauvineau V, Perennou D., Brain 133(Pt 12), 2010
PMID: 21097492
Do deaf individuals see better?
Bavelier D, Dye MW, Hauser PC., Trends Cogn. Sci. (Regul. Ed.) 10(11), 2006
PMID: 17015029
Sensory functions and limitations of the vestibular system
Benson A.., 1990
Reliability of the Karolinska Rod-and-Frame Test.
Bergman H., Percept Mot Skills 49(2), 1979
PMID: 514751
The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders.
Bisdorff AR, Wolsley CJ, Anastasopoulos D, Bronstein AM, Gresty MA., Brain 119 ( Pt 5)(), 1996
PMID: 8931577
Reference systems for coding spatial information in normal subjects and a deafferented patient.
Blouin J, Bard C, Teasdale N, Paillard J, Fleury M, Forget R, Lamarre Y., Exp Brain Res 93(2), 1993
PMID: 8491271
Perception of passive whole-body rotations in the absence of neck and body proprioception.
Blouin J, Vercher JL, Gauthier GM, Paillard J, Bard C, Lamarre Y., J. Neurophysiol. 74(5), 1995
PMID: 8592213
To pass or not to pass: more a question of body orientation than visual cues.
Bourrelly A, Vercher JL, Bringoux L., Q J Exp Psychol (Hove) 67(9), 2014
PMID: 24224565
Interaction between reference frames during subjective vertical estimates in a tilted immersive virtual environment.
Bringoux L, Bourdin C, Lepecq JC, Sandor PM, Pergandi JM, Mestre D., Perception 38(7), 2009
PMID: 19764307
Influence of pitch tilts on the perception of gravity-referenced eye level in labyrinthine defective subjects.
Bringoux L, Mezey LE, Faldon M, Gresty MA, Bronstein AM., Neuropsychologia 45(2), 2006
PMID: 17101157
Contribution of somesthetic information to the perception of body orientation in the pitch dimension.
Bringoux L, Nougier V, Barraud PA, Marin L, Raphel C., Q J Exp Psychol A 56(5), 2003
PMID: 12850991
Perception of slow pitch and roll body tilts in bilateral labyrinthine-defective subjects.
Bringoux L, Schmerber S, Nougier V, Dumas G, Barraud PA, Raphel C., Neuropsychologia 40(4), 2002
PMID: 11684170
Visually and posturally mediated tilt illusion in Parkinson's disease and in labyrinthine defective subjects.
Bronstein AM, Yardley L, Moore AP, Cleeves L., Neurology 47(3), 1996
PMID: 8797458
Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow.
Chen A, DeAngelis GC, Angelaki DE., J. Neurosci. 30(8), 2010
PMID: 20181599
Multisensory processing in spatial orientation: an inverse probabilistic approach.
Clemens IA, De Vrijer M, Selen LP, Van Gisbergen JA, Medendorp WP., J. Neurosci. 31(14), 2011
PMID: 21471371
Living without touch and peripheral information about body position and movement: studies with deafferented subjects
Cole J., Paillard J.., 1995
Visual dependency and dizziness after vestibular neuritis.
Cousins S, Cutfield NJ, Kaski D, Palla A, Seemungal BM, Golding JF, Staab JP, Bronstein AM., PLoS ONE 9(9), 2014
PMID: 25233234
Rapid elbow flexion in the absence of proprioceptive and cutaneous feedback.
Forget R, Lamarre Y., Hum Neurobiol 6(1), 1987
PMID: 3034839
Vestibular rehabilitation.
Foster CA., Baillieres Clin Neurol 3(3), 1994
PMID: 7874410
The haptic oblique effect in the perception of rod orientation by blind adults.
Gentaz E, Hatwell Y., Percept Psychophys 60(1), 1998
PMID: 9503919
The vestibular system
Goldberg J., Fernandez C.., 1984
Visual vertigo: symptom assessment, spatial orientation and postural control.
Guerraz M, Yardley L, Bertholon P, Pollak L, Rudge P, Gresty MA, Bronstein AM., Brain 124(Pt 8), 2001
PMID: 11459755

Howard I.., 1982
Selection of spatial frame of reference and postural control variability.
Isableu B, Ohlmann T, Cremieux J, Amblard B., Exp Brain Res 114(3), 1997
PMID: 9187294
Individual differences in the ability to identify, select and use appropriate frames of reference for perceptuo-motor control.
Isableu B, Ohlmann T, Cremieux J, Vuillerme N, Amblard B, Gresty MA., Neuroscience 169(3), 2010
PMID: 20570716
Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution.
Jamali M, Mitchell DE, Dale A, Carriot J, Sadeghi SG, Cullen KE., J. Physiol. (Lond.) 592(7), 2013
PMID: 24366259
Tell me your vestibular deficit, and i'll tell you how you'll compensate.
Lacour M, Dutheil S, Tighilet B, Lopez C, Borel L., Ann. N. Y. Acad. Sci. 1164(), 2009
PMID: 19645911
Multisensory integration and internal models for sensing gravity effects in primates.
Lacquaniti F, Bosco G, Gravano S, Indovina I, La Scaleia B, Maffei V, Zago M., Biomed Res Int 2014(), 2014
PMID: 25061610
Early-blind human subjects localize sound sources better than sighted subjects.
Lessard N, Pare M, Lepore F, Lassonde M., Nature 395(6699), 1998
PMID: 9751055
The thalamocortical vestibular system in animals and humans.
Lopez C, Blanke O., Brain Res Rev 67(1-2), 2011
PMID: 21223979
Changes of visual vertical perception: a long-term sign of unilateral and bilateral vestibular loss.
Lopez C, Lacour M, Ahmadi AE, Magnan J, Borel L., Neuropsychologia 45(9), 2007
PMID: 17382977
A Bayesian model of the disambiguation of gravitoinertial force by visual cues.
MacNeilage PR, Banks MS, Berger DR, Bulthoff HH., Exp Brain Res 179(2), 2006
PMID: 17136526
Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference.
MacNeilage PR, Ganesan N, Angelaki DE., J. Neurophysiol. 100(6), 2008
PMID: 18842952
A new solution to the problem of the subjective vertical.
Mittelstaedt H., Naturwissenschaften 70(6), 1983
PMID: 6877388
Self-motion direction discrimination in the visually impaired.
Moser I, Grabherr L, Hartmann M, Mast FW., Exp Brain Res 233(11), 2015
PMID: 26223579
A method for analysing performance in the rod-and frame test. II. Test of the statistical model
Nyborg H., Isaksen B.., 1974
A portable rod-and-frame apparatus.
Oltman PK., Percept Mot Skills 26(2), 1968
PMID: 5654873
The role of visual experience for the neural basis of spatial cognition.
Pasqualotto A, Proulx MJ., Neurosci Biobehav Rev 36(4), 2012
PMID: 22330729
Manual motor performance in a deafferented man.
Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD., Brain 105 (Pt 3)(), 1982
PMID: 6286035
Influence of sensory loss on the perception of verticality in stroke patients.
Saeys W, Vereeck L, Truijen S, Lafosse C, Wuyts FP, Van de Heyning P., Disabil Rehabil 34(23), 2012
PMID: 22506667
Loss of proprioception produces deficits in interjoint coordination.
Sainburg RL, Poizner H, Ghez C., J. Neurophysiol. 70(5), 1993
PMID: 8294975
Motor deficits in patients with large-fiber sensory neuropathy.
Sanes JN, Mauritz KH, Evarts EV, Dalakas MC, Chu A., Proc. Natl. Acad. Sci. U.S.A. 81(3), 1984
PMID: 6322181
Force-field adaptation without proprioception: can vision be used to model limb dynamics?
Sarlegna FR, Malfait N, Bringoux L, Bourdin C, Vercher JL., Neuropsychologia 48(1), 2010
PMID: 19695273
How do visual and postural cues combine for self-tilt perception during slow pitch rotations?
Scotto Di Cesare C, Buloup F, Mestre DR, Bringoux L., Acta Psychol (Amst) 153(), 2014
PMID: 25299446
Slow changing postural cues cancel visual field dependence on self-tilt detection.
Scotto Di Cesare C, Macaluso T, Mestre DR, Bringoux L., Gait Posture 41(1), 2014
PMID: 25457479
Vestibular perception and navigation in the congenitally blind.
Seemungal BM, Glasauer S, Gresty MA, Bronstein AM., J. Neurophysiol. 97(6), 2007
PMID: 17392406
Expectation in perceptual decision making: neural and computational mechanisms.
Summerfield C, de Lange FP., Nat. Rev. Neurosci. 15(11), 2014
PMID: 25315388
Deviation of the subjective vertical in long-standing unilateral vestibular loss.
Tabak S, Collewijn H, Boumans LJ., Acta Otolaryngol. 117(1), 1997
PMID: 9039472
Tactile spatial resolution in blind braille readers.
Van Boven RW, Hamilton RH, Kauffman T, Keenan JP, Pascual-Leone A., Neurology 54(12), 2000
PMID: 10881245
Fusion of visual and vestibular tilt cues in the perception of visual vertical.
Vingerhoets RA, De Vrijer M, Van Gisbergen JA, Medendorp WP., J. Neurophysiol. 101(3), 2008
PMID: 19118112
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27199704
PubMed | Europe PMC

Suchen in

Google Scholar