Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)

Bischof H-J, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N (2016)
PLOS ONE 11(5): e0154927.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 3.18 MB
Autor*in
Bischof, Hans-JoachimUniBi; Eckmeier, Dennis; Keary, NinaUniBi; Löwel, Siegrid; Mayer, Uwe; Michael, Neethu
Abstract / Bemerkung
The visual wulst is the telencephalic target of the avian thalamofugal visual system. It contains several retinotopically organised representations of the contralateral visual field. We used optical imaging of intrinsic signals, electrophysiological recordings, and retrograde tracing with two fluorescent tracers to evaluate properties of these representations in the zebra finch, a songbird with laterally placed eyes. Our experiments revealed that there is some variability of the neuronal maps between individuals and also concerning the number of detectable maps. It was nonetheless possible to identify three different maps, a posterolateral, a posteromedial, and an anterior one, which were quite constant in their relation to each other. The posterolateral map was in contrast to the two others constantly visible in each successful experiment. The topography of the two other maps was mirrored against that map. Electrophysiological recordings in the anterior and the posterolateral map revealed that all units responded to flashes and to moving bars. Mean directional preferences as well as latencies were different between neurons of the two maps. Tracing experiments confirmed previous reports on the thalamo-wulst connections and showed that the anterior and the posterolateral map receive projections from separate clusters within the thalamic nuclei. Maps are connected to each other by wulst intrinsic projections. Our experiments confirm that the avian visual wulst contains several separate retinotopic maps with both different physiological properties and different thalamo-wulst afferents. This confirms that the functional organization of the visual wulst is very similar to its mammalian equivalent, the visual cortex.
Erscheinungsjahr
2016
Zeitschriftentitel
PLOS ONE
Band
11
Ausgabe
5
Art.-Nr.
e0154927
ISSN
1932-6203
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2903605

Zitieren

Bischof H-J, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N. Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLOS ONE. 2016;11(5): e0154927.
Bischof, H. - J., Eckmeier, D., Keary, N., Löwel, S., Mayer, U., & Michael, N. (2016). Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLOS ONE, 11(5), e0154927. doi:10.1371/journal.pone.0154927
Bischof, Hans-Joachim, Eckmeier, Dennis, Keary, Nina, Löwel, Siegrid, Mayer, Uwe, and Michael, Neethu. 2016. “Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)”. PLOS ONE 11 (5): e0154927.
Bischof, H. - J., Eckmeier, D., Keary, N., Löwel, S., Mayer, U., and Michael, N. (2016). Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLOS ONE 11:e0154927.
Bischof, H.-J., et al., 2016. Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLOS ONE, 11(5): e0154927.
H.-J. Bischof, et al., “Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)”, PLOS ONE, vol. 11, 2016, : e0154927.
Bischof, H.-J., Eckmeier, D., Keary, N., Löwel, S., Mayer, U., Michael, N.: Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata). PLOS ONE. 11, : e0154927 (2016).
Bischof, Hans-Joachim, Eckmeier, Dennis, Keary, Nina, Löwel, Siegrid, Mayer, Uwe, and Michael, Neethu. “Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)”. PLOS ONE 11.5 (2016): e0154927.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:38Z
MD5 Prüfsumme
69949bc619c11b207472624be1851dd4


2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

76 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 2012
Near-field acuity changes after visual system lesions in pigeons. II. Telencephalon.
Hodos W, Macko KA, Bessette BB., Behav. Brain Res. 13(1), 1984
PMID: 6477716
Intensity difference thresholds after lesions of ectostriatum in pigeons.
Hodos W, Weiss SR, Bessette BB., Behav. Brain Res. 30(1), 1988
PMID: 3166707
Binocular vision.
Blake R, Wilson H., Vision Res. 51(7), 2010
PMID: 20951722
Visual evoked potentials in the forebrain of the pigeon.
Parker DM, Delius JD., Exp Brain Res 14(2), 1972
PMID: 5016589
The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds
AUTHOR UNKNOWN, 2014

AUTHOR UNKNOWN, 1983
Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds
AUTHOR UNKNOWN, 2008
Visual Wulst analyses "where" and entopallium analyses "what" in the zebra finch visual system.
Watanabe S, Mayer U, Bischof HJ., Behav. Brain Res. 222(1), 2011
PMID: 21435357
Participation of the homing pigeon thalamofugal visual pathway in sun-compass associative learning.
Budzynski CA, Gagliardo A, Ioale P, Bingman VP., Eur. J. Neurosci. 15(1), 2002
PMID: 11860519
A visual pathway links brain structures active during magnetic compass orientation in migratory birds.
Heyers D, Manns M, Luksch H, Gunturkun O, Mouritsen H., PLoS ONE 2(9), 2007
PMID: 17895978

AUTHOR UNKNOWN, 1993
Revised nomenclature for avian telencephalon and some related brainstem nuclei.
Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Gunturkun O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED, Guturkun O; Avian Brain Nomenclature Forum., J. Comp. Neurol. 473(3), 2004
PMID: 15116397
Intratelencephalic projections of the visual wulst in pigeons (Columba livia).
Shimizu T, Cox K, Karten HJ., J. Comp. Neurol. 359(4), 1995
PMID: 7499547
Optical imaging of retinotopic maps in a small songbird, the zebra finch.
Keary N, Voss J, Lehmann K, Bischof HJ, Lowel S., PLoS ONE 5(8), 2010
PMID: 20694137
Mapping retinotopic structure in mouse visual cortex with optical imaging.
Schuett S, Bonhoeffer T, Hubener M., J. Neurosci. 22(15), 2002
PMID: 12151534
Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions.
Tootell RB, Hamilton SL, Silverman MS, Switkes E., J. Neurosci. 8(5), 1988
PMID: 3367209
Cortical magnification factor and the ganglion cell density of the primate retina.
Wassle H, Grunert U, Rohrenbeck J, Boycott BB., Nature 341(6243), 1989
PMID: 2797190
A stereotaxic headholder for small birds.
Bischof HJ., Brain Res. Bull. 7(4), 1981
PMID: 7028213
Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence.
Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, Watanabe S, Kouuchi T, Tanaka R., J. Physiol. (Lond.) 549(Pt 3), 2003
PMID: 12730344
Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.
Tohmi M, Kitaura H, Komagata S, Kudoh M, Shibuki K., J. Neurosci. 26(45), 2006
PMID: 17093098

AUTHOR UNKNOWN, 2007
Vision Egg: An open-source library for realtime visual stimulus generation
AUTHOR UNKNOWN, 2008
CirkStat: AMatlab Toolbox for Circular Statistics
AUTHOR UNKNOWN, 2009
Satisfactory general anesthesia in birds.
GANDAL CP., J. Am. Vet. Med. Assoc. 128(7), 1956
PMID: 13306644
Morphological alterations of the visual system in white zebra finches.
Leminski S, Bischof HJ., Neuroreport 7(2), 1996
PMID: 8730828
Visual system alterations in White Zebra Finches.
Bredenkotter M, Engelage J, Bischof HJ., Brain Behav. Evol. 47(1), 1996
PMID: 8834782
Thalamo-hyperstriate interrelations in the pigeon.
Hunt SP, Webster KE., Brain Res. 44(2), 1972
PMID: 5075711
The retino-thalamo-hyperstriatal pathway in the pigeon (Columba livia).
Miceli D, Peyrichoux J, Reperant J., Brain Res. 100(1), 1975
PMID: 1182505
Binocularity in the little owl, Athene noctua. I. Anatomical investigation of the thalamo-Wulst pathway.
Bagnoli P, Fontanesi G, Casini G, Porciatti V., Brain Behav. Evol. 35(1), 1990
PMID: 2340413
Cell-type homologies and the origins of the neocortex.
Dugas-Ford J, Rowell JJ, Ragsdale CW., Proc. Natl. Acad. Sci. U.S.A. 109(42), 2012
PMID: 23027930
Mapping retinotopic structure in mouse visual cortex with optical imaging.
Schuett S, Bonhoeffer T, Hubener M., J. Neurosci. 22(15), 2002
PMID: 12151534

AUTHOR UNKNOWN, 1984
Physiological Studies on Neural Mechanisms of Visual Localisation and Discrimination
AUTHOR UNKNOWN, 1941
The scale of the visual pathways of mouse and rat
AUTHOR UNKNOWN, 1987
Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17.
Chapman B, Bonhoeffer T., Proc. Natl. Acad. Sci. U.S.A. 95(5), 1998
PMID: 9482934
Unequal representation of cardinal and oblique contours in ferret visual cortex.
Coppola DM, White LE, Fitzpatrick D, Purves D., Proc. Natl. Acad. Sci. U.S.A. 95(5), 1998
PMID: 9482936
Electrophysiology of contralateral and ipsilateral visual projections to the Wulst in pigeon (Columba livia)
AUTHOR UNKNOWN, 1971
Responses and properties of receptive fields of neurons in the visual projection zone of the pigeon hyperstriatum.
Gusel'nikov VI, Morenkov ED, Hunh DC., Neurosci. Behav. Physiol. 8(3), 1977
PMID: 617217
Cortical projections of the lateral geniculate nucleus in the cat.
Geisert EE Jr., J. Comp. Neurol. 190(4), 1980
PMID: 7400387
Color-reversal learning: effects after lesions of thalamic visual structures in pigeons
AUTHOR UNKNOWN, 1993
Reversal learning in pigeons: effects of selective lesions of the Wulst.
Shimizu T, Hodos W., Behav. Neurosci. 103(2), 1989
PMID: 2706073
A quantitative theory of immediate visual recognition
AUTHOR UNKNOWN, 2007
The effects of superior colliculus lesions in hamsters: feature detection versus spatial localization.
Thinus-Blanc C, Scardigli P, Buhot MC., Physiol. Behav. 49(1), 1991
PMID: 2017461
Spatial Learning in a Song Bird, the Zebra Finch
AUTHOR UNKNOWN, 2001
Visual Wulst analyses "where" and entopallium analyses "what" in the zebra finch visual system.
Watanabe S, Mayer U, Bischof HJ., Behav. Brain Res. 222(1), 2011
PMID: 21435357
Spatial memory and the avian hippocampus: research in zebra finches.
Mayer U, Watanabe S, Bischof HJ., J. Physiol. Paris 107(1-2), 2012
PMID: 22613455
Neural maps of head movement vector and speed in the optic tectum of the barn owl.
du Lac S, Knudsen EI., J. Neurophysiol. 63(1), 1990
PMID: 2299378
Two visual systems.
Schneider GE., Science 163(3870), 1969
PMID: 5763873
Separate visual pathways for perception and action.
Goodale MA, Milner AD., Trends Neurosci. 15(1), 1992
PMID: 1374953
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27139912
PubMed | Europe PMC

Suchen in

Google Scholar