Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)

Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehöver P, Weisshaar B, Schmidt T (2016)
BMC Plant Biology 16: 120.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
OA 1.66 MB
Autor*in
Kowar, Teresa; Zakrzewski, Falk; Macas, Jiří; Kobližková, Andrea; Viehöver, PriscaUniBi; Weisshaar, BerndUniBi ; Schmidt, Thomas
Abstract / Bemerkung
Background Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world’s annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). Results ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. Conclusions The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat rich heterochromatic regions characterized by the presence of H3K9me2.
Stichworte
Centromere CenH3 H3K9me2 Heterochromatin Repeats Beta vulgaris ChIP-Seq
Erscheinungsjahr
2016
Zeitschriftentitel
BMC Plant Biology
Band
16
Art.-Nr.
120
ISSN
1471-2229
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
Page URI
https://pub.uni-bielefeld.de/record/2903501

Zitieren

Kowar T, Zakrzewski F, Macas J, et al. Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology. 2016;16: 120.
Kowar, T., Zakrzewski, F., Macas, J., Kobližková, A., Viehöver, P., Weisshaar, B., & Schmidt, T. (2016). Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology, 16, 120. doi:10.1186/s12870-016-0805-5
Kowar, T., Zakrzewski, F., Macas, J., Kobližková, A., Viehöver, P., Weisshaar, B., and Schmidt, T. (2016). Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology 16:120.
Kowar, T., et al., 2016. Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology, 16: 120.
T. Kowar, et al., “Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)”, BMC Plant Biology, vol. 16, 2016, : 120.
Kowar, T., Zakrzewski, F., Macas, J., Kobližková, A., Viehöver, P., Weisshaar, B., Schmidt, T.: Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology. 16, : 120 (2016).
Kowar, Teresa, Zakrzewski, Falk, Macas, Jiří, Kobližková, Andrea, Viehöver, Prisca, Weisshaar, Bernd, and Schmidt, Thomas. “Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)”. BMC Plant Biology 16 (2016): 120.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:37Z
MD5 Prüfsumme
69a25be383d9c85994085c5f54ffd0e5

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Amplification and adaptation of centromeric repeats in polyploid switchgrass species.
Yang X, Zhao H, Zhang T, Zeng Z, Zhang P, Zhu B, Han Y, Braz GT, Casler MD, Schmutz J, Jiang J., New Phytol 218(4), 2018
PMID: 29577299
Organization and evolution of two repetitive sequences, 18-24J and 12-13P, in the genome of Chenopodium (Amaranthaceae).
Orzechowska M, Majka M, Weiss-Schneeweiss H, Kovařík A, Borowska-Zuchowska N, Kolano B., Genome 61(9), 2018
PMID: 30067084
Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum.
Zhang W, Zuo S, Li Z, Meng Z, Han J, Song J, Pan YB, Wang K., Sci Rep 7(), 2017
PMID: 28134354
DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).
Zakrzewski F, Schmidt M, Van Lijsebettens M, Schmidt T., Plant J 90(6), 2017
PMID: 28257158
Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants.
Li SF, Su T, Cheng GQ, Wang BX, Li X, Deng CL, Gao WJ., Genes (Basel) 8(10), 2017
PMID: 29064432

80 References

Daten bereitgestellt von Europe PubMed Central.

Conflict begets complexity: the evolution of centromeres.
Malik HS, Henikoff S., Curr. Opin. Genet. Dev. 12(6), 2002
PMID: 12433586
Stretching the rules: monocentric chromosomes with multiple centromere domains.
Neumann P, Navratilova A, Schroeder-Reiter E, Koblizkova A, Steinbauerova V, Chocholova E, Novak P, Wanner G, Macas J., PLoS Genet. 8(6), 2012
PMID: 22737088
Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon.
Tek AL, Kashihara K, Murata M, Nagaki K., Chromosome Res. 18(3), 2010
PMID: 20204495
Evolutionary genomics of chromoviruses in eukaryotes.
Gorinsek B, Gubensek F, Kordis D., Mol. Biol. Evol. 21(5), 2004
PMID: 14739248
Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice.
Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH., Proc. Natl. Acad. Sci. U.S.A. 97(3), 2000
PMID: 10655499
CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1.
Regnier V, Vagnarelli P, Fukagawa T, Zerjal T, Burns E, Trouche D, Earnshaw W, Brown W., Mol. Cell. Biol. 25(10), 2005
PMID: 15870271
Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris.
Zakrzewski F, Wenke T, Holtgrawe D, Weisshaar B, Schmidt T., BMC Plant Biol. 10(), 2010
PMID: 20064260
Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species.
Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A, Dohm JC, Weisshaar B, Himmelbauer H, Schmidt T., Plant J. 85(2), 2016
PMID: 26676716
Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species.
Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J., Proc. Natl. Acad. Sci. U.S.A. 102(33), 2005
PMID: 16040802
Genome size and the proportion of repeated nucleotide sequence DNA in plants.
Flavell RB, Bennett MD, Smith JB, Smith DB., Biochem. Genet. 12(4), 1974
PMID: 4441361
Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris).
Menzel G, Dechyeva D, Wenke T, Holtgrawe D, Weisshaar B, Schmidt T., Ann. Bot. 102(4), 2008
PMID: 18682437
Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores.
Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH., Dev. Cell 10(3), 2006
PMID: 16516834
A molecular view of plant centromeres.
Jiang J, Birchler JA, Parrott WA, Dawe RK., Trends Plant Sci. 8(12), 2003
PMID: 14659705
ROSINA (RSI) is part of a CACTA transposable element, TamRSI, and links flower development to transposon activity.
Roccaro M, Li Y, Sommer H, Saedler H., Mol. Genet. Genomics 278(3), 2007
PMID: 17588178
A PCR-based assay to detect En/Spm-like transposon sequences in plants.
Staginnus C, Huettel B, Desel C, Schmidt T, Kahl G., Chromosome Res. 9(7), 2001
PMID: 11721956
Epigenetic consequences of nucleosome dynamics.
Ahmad K, Henikoff S., Cell 111(3), 2002
PMID: 12419239
Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons.
Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo DH, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG., PLoS Genet. 5(11), 2009
PMID: 19956743
De novo centromere formation on a chromosome fragment in maize.
Fu S, Lv Z, Gao Z, Wu H, Pang J, Zhang B, Dong Q, Guo X, Wang XJ, Birchler JA, Han F., Proc. Natl. Acad. Sci. U.S.A. 110(15), 2013
PMID: 23530217
The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres.
Zhang T, Talbert PB, Zhang W, Wu Y, Yang Z, Henikoff JG, Henikoff S, Jiang J., Proc. Natl. Acad. Sci. U.S.A. 110(50), 2013
PMID: 24191062
Integrative epigenomic mapping defines four main chromatin states in Arabidopsis.
Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Despres B, Drevensek S, Barneche F, Derozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette ML, Robin S, Caboche M, Colot V., EMBO J. 30(10), 2011
PMID: 21487388
Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences.
Zhang B, Lv Z, Pang J, Liu Y, Guo X, Fu S, Li J, Dong Q, Wu HJ, Gao Z, Wang XJ, Han F., Plant Cell 25(6), 2013
PMID: 23771890
Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize.
Liu Y, Su H, Pang J, Gao Z, Wang XJ, Birchler JA, Han F., Proc. Natl. Acad. Sci. U.S.A. 112(11), 2015
PMID: 25733907
Cytoplasmic organelle DNA preferentially inserts into open chromatin.
Wang D, Timmis JN., Genome Biol Evol 5(6), 2013
PMID: 23661564
The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation.
Zakrzewski F, Schubert V, Viehoever P, Minoche AE, Dohm JC, Himmelbauer H, Weisshaar B, Schmidt T., Plant J. 78(6), 2014
PMID: 24661787
Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives.
Menzel G, Krebs C, Diez M, Holtgrawe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Plant Mol. Biol. 78(4-5), 2012
PMID: 22246381
Plant centromeric retrotransposons: a structural and cytogenetic perspective.
Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, Widmer A, Dolezel J, Macas J., Mob DNA 2(1), 2011
PMID: 21371312
Cytosine methylation of an ancient satellite family in the wild beet Beta procumbens.
Schmidt M, Hense S, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T, Zakrzewski F., Cytogenet. Genome Res. 143(1-3), 2014
PMID: 24994030
Efficient insertional mutagenesis in rice using the maize En/Spm elements.
Kumar CS, Wing RA, Sundaresan V., Plant J. 44(5), 2005
PMID: 16297077
Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.
Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SW., Genome Biol. 14(1), 2013
PMID: 23363705
Structure, dynamics, and evolution of centromeric nucleosomes.
Dalal Y, Furuyama T, Vermaak D, Henikoff S., Proc. Natl. Acad. Sci. U.S.A. 104(41), 2007
PMID: 17893333
Chromatin modifications and their function.
Kouzarides T., Cell 128(4), 2007
PMID: 17320507
Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant.
Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S., Plant Cell 14(5), 2002
PMID: 12034896
Distribution and evolution of two satellite DNAs in the genus Beta.
Schmidt T, Jung C, Metzlaff M., Theor. Appl. Genet. 82(6), 1991
PMID: 24213457
Molecular organization of terminal repetitive DNA in Beta species.
Dechyeva D, Schmidt T., Chromosome Res. 14(8), 2006
PMID: 17195925
The centromere paradox: stable inheritance with rapidly evolving DNA.
Henikoff S, Ahmad K, Malik HS., Science 293(5532), 2001
PMID: 11498581
Major evolutionary transitions in centromere complexity.
Malik HS, Henikoff S., Cell 138(6), 2009
PMID: 19766562
Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation.
Gent JI, Madzima TF, Bader R, Kent MR, Zhang X, Stam M, McGinnis KM, Dawe RK., Plant Cell 26(12), 2014
PMID: 25465407
Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation.
Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, Koszegi D, Schubert I., Plant J. 68(1), 2011
PMID: 21635586
A transcription fork model for Pol IV and Pol V-dependent RNA-directed DNA methylation.
Pikaard CS, Haag JR, Pontes OM, Blevins T, Cocklin R., Cold Spring Harb. Symp. Quant. Biol. 77(), 2012
PMID: 23567894
Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome.
Wollrab C, Heitkam T, Holtgrawe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Plant J. 72(4), 2012
PMID: 22804913
Genomic distribution of H3K9me2 and DNA methylation in a maize genome.
West PT, Li Q, Ji L, Eichten SR, Song J, Vaughn MW, Schmitz RJ, Springer NM., PLoS ONE 9(8), 2014
PMID: 25122127
The genome of the recently domesticated crop plant sugar beet (Beta vulgaris).
Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldon T, Lehrach H, Weisshaar B, Himmelbauer H., Nature 505(7484), 2013
PMID: 24352233
Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon.
Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J., Plant Cell 14(8), 2002
PMID: 12172016
Epigenetic profiling of heterochromatic satellite DNA.
Zakrzewski F, Weisshaar B, Fuchs J, Bannack E, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Chromosoma 120(4), 2011
PMID: 21594600
Identification of the centromere-specific histone H3 variant in Lotus japonicus.
Tek AL, Kashihara K, Murata M, Nagaki K., Gene 538(1), 2014
PMID: 24462968
ChIP-seq: advantages and challenges of a maturing technology.
Park PJ., Nat. Rev. Genet. 10(10), 2009
PMID: 19736561
Repetitive DNA and next-generation sequencing: computational challenges and solutions.
Treangen TJ, Salzberg SL., Nat. Rev. Genet. 13(1), 2011
PMID: 22124482
CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley.
Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR., Chromosoma 116(3), 2007
PMID: 17483978
Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration.
Weber B, Heitkam T, Holtgrawe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Mob DNA 4(1), 2013
PMID: 23448600
Characterization of CENH3 and centromere-associated DNA sequences in sugarcane.
Nagaki K, Murata M., Chromosome Res. 13(2), 2005
PMID: 15861308
Sequencing of a rice centromere uncovers active genes.
Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J., Nat. Genet. 36(2), 2004
PMID: 14716315
Repeatless and repeat-based centromeres in potato: implications for centromere evolution.
Gong Z, Wu Y, Koblizkova A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novak P, Buell CR, Macas J, Jiang J., Plant Cell 24(9), 2012
PMID: 22968715
Epigenetic regulation of heterochromatic DNA stability.
Peng JC, Karpen GH., Curr. Opin. Genet. Dev. 18(2), 2008
PMID: 18372168
Maize centromeres expand and adopt a uniform size in the genetic background of oat.
Wang K, Wu Y, Zhang W, Dawe RK, Jiang J., Genome Res. 24(1), 2013
PMID: 24100079
Centromeric retroelements and satellites interact with maize kinetochore protein CENH3.
Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK., Plant Cell 14(11), 2002
PMID: 12417704
Evaluation of next-generation sequencing software in mapping and assembly.
Bao S, Jiang R, Kwan W, Wang B, Ma X, Song YQ., J. Hum. Genet. 56(6), 2011
PMID: 21525877
High-frequency gene transfer from the chloroplast genome to the nucleus.
Stegemann S, Hartmann S, Ruf S, Bock R., Proc. Natl. Acad. Sci. U.S.A. 100(15), 2003
PMID: 12817081
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Histone modifications associated with both A and B chromosomes of maize.
Jin W, Lamb JC, Zhang W, Kolano B, Birchler JA, Jiang J., Chromosome Res. 16(8), 2008
PMID: 18987983
Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades.
Heitkam T, Holtgrawe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T., Plant J. 79(3), 2014
PMID: 24862340

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27230558
PubMed | Europe PMC

Suchen in

Google Scholar