From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents

Dreyer A, Ennen I, Koop T, Hütten A, Jutzi P (2011)
Small 7(21): 3075-3086.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2011
Zeitschriftentitel
Small
Band
7
Ausgabe
21
Seite(n)
3075-3086
ISSN
1613-6810
Page URI
https://pub.uni-bielefeld.de/record/2903421

Zitieren

Dreyer A, Ennen I, Koop T, Hütten A, Jutzi P. From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small. 2011;7(21):3075-3086.
Dreyer, A., Ennen, I., Koop, T., Hütten, A., & Jutzi, P. (2011). From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small, 7(21), 3075-3086. doi:10.1002/smll.201101085
Dreyer, A., Ennen, I., Koop, T., Hütten, A., and Jutzi, P. (2011). From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small 7, 3075-3086.
Dreyer, A., et al., 2011. From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small, 7(21), p 3075-3086.
A. Dreyer, et al., “From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents”, Small, vol. 7, 2011, pp. 3075-3086.
Dreyer, A., Ennen, I., Koop, T., Hütten, A., Jutzi, P.: From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small. 7, 3075-3086 (2011).
Dreyer, Axel, Ennen, Inga, Koop, Thomas, Hütten, Andreas, and Jutzi, Peter. “From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents”. Small 7.21 (2011): 3075-3086.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses.
Wolff A, Hetaba W, Wißbrock M, Löffler S, Mill N, Eckstädt K, Dreyer A, Ennen I, Sewald N, Schattschneider P, Hütten A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605288

46 References

Daten bereitgestellt von Europe PubMed Central.


Schmid, 1998

Xia, Angew. Chem. 121(), 2009
Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?
Xia Y, Xiong Y, Lim B, Skrabalak SE., Angew. Chem. Int. Ed. Engl. 48(1), 2009
PMID: 19053095
Insights into phase transition kinetics from colloid science.
Anderson VJ, Lekkerkerker HN., Nature 416(6883), 2002
PMID: 11976674

LaMer, J. Am. Chem. Soc. 72(), 1950

Volmer, Z. Phys. Chem. 119(), 1926

Becker, Ann. Phys. 24(), 1935
Enhancement of protein crystal nucleation by critical density fluctuations.
ten Wolde PR, Frenkel D., Science 277(5334), 1997
PMID: 9302288

Vekilov, Cryst. Growth Des. 4(), 2004
Nucleation of crystals from solution: classical and two-step models.
Erdemir D, Lee AY, Myerson AS., Acc. Chem. Res. 42(5), 2009
PMID: 19402623

Zhang, Angew. Chem. 121(), 2009
Nucleation: what happens at the initial stage?
Zhang TH, Liu XY., Angew. Chem. Int. Ed. Engl. 48(7), 2009
PMID: 19132645

Wronski, Brit. J. Appl. Phys. 18(), 1967

Buffat, Physical Review A 13(), 1976

Couchman, Nature 269(), 1977

Schierning, J. Appl. Phys. 103(), 2008
LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles.
Schwind M, Zhdanov VP, Zoric I, Kasemo B., Nano Lett. 10(3), 2010
PMID: 20108946

Soulantica, Angew. Chem. 115(), 2003
Spontaneous formation of ordered 3D superlattices of nanocrystals from polydisperse colloidal solutions.
Soulantica K, Maisonnat A, Fromen MC, Casanove MJ, Chaudret B., Angew. Chem. Int. Ed. Engl. 42(17), 2003
PMID: 12730977

Veith, Eur. J. Inorg. Chem. 18(), 2005

Wang, Nano Lett. 4(), 2004

Jutzi, Chem. Ber. 113(), 1980

Pound, J. Am. Chem. Soc. 74(), 1952

Turnbull, J. Chem. Phys. 18(), 1950

Oshima, Z. Phys. D 27(), 1993

Delogu, J. Mater. Sci. 43(), 2008

AUTHOR UNKNOWN, 0

Vitos, Surface Science 411(), 1998

Pacholski, Angew. Chem. 114(), 2002
Self-assembly of ZnO: from nanodots to nanorods.
Pacholski C, Kornowski A, Weller H., Angew. Chem. Int. Ed. Engl. 41(7), 2002
PMID: 12491255

Giersig, J. Mater. Chem. 14(), 2004
The role of crystal polarity in alpha-amino acid crystals for induced nucleation of ice.
Gavish M, Wang JL, Eisenstein M, Lahav M, Leiserowitz L., Science 256(5058), 1992
PMID: 1589763
Water freezes differently on positively and negatively charged surfaces of pyroelectric materials.
Ehre D, Lavert E, Lahav M, Lubomirsky I., Science 327(5966), 2010
PMID: 20133568

Merry, Acta Metall. 32(), 1984

Trentler, Science 270(), 1995

Wang, Phys. Chem. B 108(), 2004

von, Z. Phys. 21(), 1917
A multi-rate kinetic model for spontaneous oriented attachment of CdS nanorods.
Gunning RD, O'Sullivan C, Ryan KM., Phys Chem Chem Phys 12(39), 2010
PMID: 20714581

Park, Angew. Chem. 119(), 2007
Synthesis of monodisperse spherical nanocrystals.
Park J, Joo J, Kwon SG, Jang Y, Hyeon T., Angew. Chem. Int. Ed. Engl. 46(25), 2007
PMID: 17525914
Colloidal nanocrystal synthesis and the organic-inorganic interface.
Yin Y, Alivisatos AP., Nature 437(7059), 2005
PMID: 16193041

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21932284
PubMed | Europe PMC

Suchen in

Google Scholar