Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR

Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold G (2016)
J Bacteriol 198(16): 2204-2218.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Uhde, Andreas; Brühl, Natalie; Goldbeck, Oliver; Matano, ChristianUniBi; Gurow, Oksana; Rückert, ChristianUniBi ; Marin, Kay; Wendisch, Volker F.UniBi ; Krämer, Reinhard; Seibold, Gerd
Erscheinungsjahr
2016
Zeitschriftentitel
J Bacteriol
Band
198
Ausgabe
16
Seite(n)
2204-2218
ISSN
0021-9193
eISSN
1098-5530
Page URI
https://pub.uni-bielefeld.de/record/2903398

Zitieren

Uhde A, Brühl N, Goldbeck O, et al. Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J Bacteriol. 2016;198(16):2204-2218.
Uhde, A., Brühl, N., Goldbeck, O., Matano, C., Gurow, O., Rückert, C., Marin, K., et al. (2016). Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J Bacteriol, 198(16), 2204-2218. doi:10.1128/JB.00820-15
Uhde, Andreas, Brühl, Natalie, Goldbeck, Oliver, Matano, Christian, Gurow, Oksana, Rückert, Christian, Marin, Kay, Wendisch, Volker F., Krämer, Reinhard, and Seibold, Gerd. 2016. “Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR”. J Bacteriol 198 (16): 2204-2218.
Uhde, A., Brühl, N., Goldbeck, O., Matano, C., Gurow, O., Rückert, C., Marin, K., Wendisch, V. F., Krämer, R., and Seibold, G. (2016). Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J Bacteriol 198, 2204-2218.
Uhde, A., et al., 2016. Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J Bacteriol, 198(16), p 2204-2218.
A. Uhde, et al., “Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR”, J Bacteriol, vol. 198, 2016, pp. 2204-2218.
Uhde, A., Brühl, N., Goldbeck, O., Matano, C., Gurow, O., Rückert, C., Marin, K., Wendisch, V.F., Krämer, R., Seibold, G.: Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J Bacteriol. 198, 2204-2218 (2016).
Uhde, Andreas, Brühl, Natalie, Goldbeck, Oliver, Matano, Christian, Gurow, Oksana, Rückert, Christian, Marin, Kay, Wendisch, Volker F., Krämer, Reinhard, and Seibold, Gerd. “Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR”. J Bacteriol 198.16 (2016): 2204-2218.

91 References

Daten bereitgestellt von Europe PubMed Central.


Wendisch VF., 2007
Bio-based production of organic acids with Corynebacterium glutamicum.
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2012
PMID: 23199277
Regulation of carbon metabolism in
Arndt A, Eikmanns BJ., 2008
Engineering of for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids
Hadiati A, Krahn I, Lindner SN, Wendisch VF., 2015
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672486
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24668244
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl. Environ. Microbiol. 74(20), 2008
PMID: 18757581
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Batch kinetics of during growth on various carbon substrates—use of substrate mixtures to localize metabolic bottlenecks
Cocaign M, Monnet C, Lindley ND., 1993
Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.
Krause FS, Henrich A, Blombach B, Kramer R, Eikmanns BJ, Seibold GM., Appl. Environ. Microbiol. 76(1), 2009
PMID: 19880641
Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032.
Nentwich SS, Brinkrolf K, Gaigalat L, Huser AT, Rey DA, Mohrbach T, Marin K, Puhler A, Tauch A, Kalinowski J., Microbiology (Reading, Engl.) 155(Pt 1), 2009
PMID: 19118356
Simultaneous consumption of glucose and fructose from sugar mixtures during botch growth of
Dominguez H, CocaignBousquet M, Lindley ND., 1997
Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium.
Kramer R, Lambert C, Hoischen C, Ebbighausen H., Eur. J. Biochem. 194(3), 1990
PMID: 1980106
Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum.
Kronemeyer W, Peekhaus N, Kramer R, Sahm H, Eggeling L., J. Bacteriol. 177(5), 1995
PMID: 7868586
Sialic acid utilization by the soil bacterium Corynebacterium glutamicum.
Gruteser N, Marin K, Kramer R, Thomas GH., FEMS Microbiol. Lett. 336(2), 2012
PMID: 22924979
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
Sialic acids in human health and disease.
Varki A., Trends Mol Med 14(8), 2008
PMID: 18606570
Essentials of glycobiology
Varki A, Schauer R., 2009
Sialylation is essential for early development in mice.
Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W, Horstkorte R., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11929971
Host sialic acids: a delicacy for the pathogen with discerning taste
Haines-Menges BL, Whitaker WB, Lubin JB, Boyd EF., 2015
Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice.
Huang YL, Chassard C, Hausmann M, von Itzstein M, Hennet T., Nat Commun 6(), 2015
PMID: 26303108
Diversity of microbial sialic acid metabolism.
Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM., Microbiol. Mol. Biol. Rev. 68(1), 2004
PMID: 15007099
On sialic acid transport and utilization by Vibrio cholerae.
Thomas GH, Boyd EF., Microbiology (Reading, Engl.) 157(Pt 12), 2011
PMID: 21980116
Regulation of sialic acid transport and catabolism in Haemophilus influenzae.
Johnston JW, Zaleski A, Allen S, Mootz JM, Armbruster D, Gibson BW, Apicella MA, Munson RS Jr., Mol. Microbiol. 66(1), 2007
PMID: 17880422
Metabolism of sialic acid by Bifidobacterium breve UCC2003.
Egan M, O'Connell Motherway M, Ventura M, van Sinderen D., Appl. Environ. Microbiol. 80(14), 2014
PMID: 24814790
Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenzae.
Johnston JW, Shamsulddin H, Miller AF, Apicella MA., BMC Microbiol. 10(), 2010
PMID: 20843349
Sialic acid mediated transcriptional modulation of a highly conserved sialometabolism gene cluster in Haemophilus influenzae and its effect on virulence.
Jenkins GA, Figueira M, Kumar GA, Sweetman WA, Makepeace K, Pelton SI, Moxon R, Hood DW., BMC Microbiol. 10(), 2010
PMID: 20158882
Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR.
Hwang J, Kim BS, Jang SY, Lim JG, You DJ, Jung HS, Oh TK, Lee JO, Choi SH, Kim MH., Proc. Natl. Acad. Sci. U.S.A. 110(30), 2013
PMID: 23832782
Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli.
Kalivoda KA, Steenbergen SM, Vimr ER, Plumbridge J., J. Bacteriol. 185(16), 2003
PMID: 12897000
Control of the Escherichia coli sialoregulon by transcriptional repressor NanR.
Kalivoda KA, Steenbergen SM, Vimr ER., J. Bacteriol. 195(20), 2013
PMID: 23935044
A GntR-type transcriptional repressor controls sialic acid utilization in Bifidobacterium breve UCC2003.
Egan M, O'Connell Motherway M, van Sinderen D., FEMS Microbiol. Lett. 362(4), 2014
PMID: 25688064
Experiments
Eggeling L, Reyes O., 2005

Sambrook J, Russell DW., 2001
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis.
Knoppova M, Phensaijai M, Vesely M, Zemanova M, Nesvera J, Patek M., Curr. Microbiol. 55(3), 2007
PMID: 17657537
Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
Lindner SN, Petrov DP, Hagmann CT, Henrich A, Kramer R, Eikmanns BJ, Wendisch VF, Seibold GM., Appl. Environ. Microbiol. 79(8), 2013
PMID: 23396334
Osmosensor and osmoregulator properties of the betaine carrier BetP from Corynebacterium glutamicum in proteoliposomes.
Rubenhagen R, Ronsch H, Jung H, Kramer R, Morbach S., J. Biol. Chem. 275(2), 2000
PMID: 10625602
Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF., FEMS Microbiol. Lett. 273(1), 2007
PMID: 17559405
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
Henrich A, Kuhlmann N, Eck AW, Kramer R, Seibold GM., J. Bacteriol. 195(11), 2013
PMID: 23543710
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
SUPERFAMILY--sophisticated comparative genomics, data mining, visualization and phylogeny.
Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J., Nucleic Acids Res. 37(Database issue), 2008
PMID: 19036790
KEGG for linking genomes to life and the environment.
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y., Nucleic Acids Res. 36(Database issue), 2007
PMID: 18077471
Discovering sequence motifs with arbitrary insertions and deletions.
Frith MC, Saunders NF, Kobe B, Bailey TL., PLoS Comput. Biol. 4(4), 2008
PMID: 18437229
FIMO: scanning for occurrences of a given motif.
Grant CE, Bailey TL, Noble WS., Bioinformatics 27(7), 2011
PMID: 21330290
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK., FEMS Microbiol. Lett. 244(2), 2005
PMID: 15766777
The mechanisms of carbon catabolite repression in bacteria.
Deutscher J., Curr. Opin. Microbiol. 11(2), 2008
PMID: 18359269
Sialic acid catabolism in Staphylococcus aureus.
Olson ME, King JM, Yahr TL, Horswill AR., J. Bacteriol. 195(8), 2013
PMID: 23396916
Regulation of neuraminidase expression in Streptococcus pneumoniae.
Gualdi L, Hayre JK, Gerlini A, Bidossi A, Colomba L, Trappetti C, Pozzi G, Docquier JD, Andrew P, Ricci S, Oggioni MR., BMC Microbiol. 12(), 2012
PMID: 22963456
CcpA ensures optimal metabolic fitness of Streptococcus pneumoniae.
Carvalho SM, Kloosterman TG, Kuipers OP, Neves AR., PLoS ONE 6(10), 2011
PMID: 22039538
Corynebacterium glutamicum: a dissection of the PTS.
Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361073
Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum.
Kuhlmann N, Petrov DP, Henrich AW, Lindner SN, Wendisch VF, Seibold GM., Microbiology (Reading, Engl.) 161(9), 2015
PMID: 26296766
High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum.
Jungwirth B, Sala C, Kohl TA, Uplekar S, Baumbach J, Cole ST, Puhler A, Tauch A., Microbiology (Reading, Engl.) 159(Pt 1), 2012
PMID: 23103979
Insights into the evolution of sialic acid catabolism among bacteria.
Almagro-Moreno S, Boyd EF., BMC Evol. Biol. 9(), 2009
PMID: 19470179
The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence.
Trost E, Ott L, Schneider J, Schroder J, Jaenicke S, Goesmann A, Husemann P, Stoye J, Dorella FA, Rocha FS, Soares Sde C, D'Afonseca V, Miyoshi A, Ruiz J, Silva A, Azevedo V, Burkovski A, Guiso N, Join-Lambert OF, Kayal S, Tauch A., BMC Genomics 11(), 2010
PMID: 21192786
Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors.
Trost E, Al-Dilaimi A, Papavasiliou P, Schneider J, Viehoever P, Burkovski A, Soares SC, Almeida SS, Dorella FA, Miyoshi A, Azevedo V, Schneider MP, Silva A, Santos CS, Santos LS, Sabbadini P, Dias AA, Hirata R Jr, Mattos-Guaraldi AL, Tauch A., BMC Genomics 12(), 2011
PMID: 21801446
Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia.
Trost E, Blom J, Soares Sde C, Huang IH, Al-Dilaimi A, Schroder J, Jaenicke S, Dorella FA, Rocha FS, Miyoshi A, Azevedo V, Schneider MP, Silva A, Camello TC, Sabbadini PS, Santos CS, Santos LS, Hirata R Jr, Mattos-Guaraldi AL, Efstratiou A, Schmitt MP, Ton-That H, Tauch A., J. Bacteriol. 194(12), 2012
PMID: 22505676
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27274030
PubMed | Europe PMC

Suchen in

Google Scholar