Size dependence of phase transitions in aerosol nanoparticles

Cheng Y, Su H, Koop T, Mikhailov E, Pöschl U (2015)
Nature Communications 6(1): 5923.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.77 MB
Autor*in
Cheng, Yafang; Su, Hang; Koop, ThomasUniBi ; Mikhailov, Eugene; Pöschl, Ulrich
Erscheinungsjahr
2015
Zeitschriftentitel
Nature Communications
Band
6
Ausgabe
1
Art.-Nr.
5923
ISSN
2041-1723
Page URI
https://pub.uni-bielefeld.de/record/2902646

Zitieren

Cheng Y, Su H, Koop T, Mikhailov E, Pöschl U. Size dependence of phase transitions in aerosol nanoparticles. Nature Communications. 2015;6(1): 5923.
Cheng, Y., Su, H., Koop, T., Mikhailov, E., & Pöschl, U. (2015). Size dependence of phase transitions in aerosol nanoparticles. Nature Communications, 6(1), 5923. doi:10.1038/ncomms6923
Cheng, Yafang, Su, Hang, Koop, Thomas, Mikhailov, Eugene, and Pöschl, Ulrich. 2015. “Size dependence of phase transitions in aerosol nanoparticles”. Nature Communications 6 (1): 5923.
Cheng, Y., Su, H., Koop, T., Mikhailov, E., and Pöschl, U. (2015). Size dependence of phase transitions in aerosol nanoparticles. Nature Communications 6:5923.
Cheng, Y., et al., 2015. Size dependence of phase transitions in aerosol nanoparticles. Nature Communications, 6(1): 5923.
Y. Cheng, et al., “Size dependence of phase transitions in aerosol nanoparticles”, Nature Communications, vol. 6, 2015, : 5923.
Cheng, Y., Su, H., Koop, T., Mikhailov, E., Pöschl, U.: Size dependence of phase transitions in aerosol nanoparticles. Nature Communications. 6, : 5923 (2015).
Cheng, Yafang, Su, Hang, Koop, Thomas, Mikhailov, Eugene, and Pöschl, Ulrich. “Size dependence of phase transitions in aerosol nanoparticles”. Nature Communications 6.1 (2015): 5923.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:37Z
MD5 Prüfsumme
1f411e77b0e472504b89adef6e39e616


17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations.
Zhou S, Hwang BCH, Lakey PSJ, Zuend A, Abbatt JPD, Shiraiwa M., Proc Natl Acad Sci U S A 116(24), 2019
PMID: 31142653
The viscosity of atmospherically relevant organic particles.
Reid JP, Bertram AK, Topping DO, Laskin A, Martin ST, Petters MD, Pope FD, Rovelli G., Nat Commun 9(1), 2018
PMID: 29511168
Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases.
Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R, Cheng L., Adv Mater 30(17), 2018
PMID: 29543350
Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs.
Mu Q, Shiraiwa M, Octaviani M, Ma N, Ding A, Su H, Lammel G, Pöschl U, Cheng Y., Sci Adv 4(3), 2018
PMID: 29750188
Phase transition dynamics of single optically trapped aqueous potassium carbonate particles.
Esat K, David G, Poulkas T, Shein M, Signorell R., Phys Chem Chem Phys 20(17), 2018
PMID: 29651474
Strengths and Weaknesses of Molecular Simulations of Electrosprayed Droplets.
Consta S, In Oh M, Kwan V, Malevanets A., J Am Soc Mass Spectrom 29(12), 2018
PMID: 30259408
Global distribution of particle phase state in atmospheric secondary organic aerosols.
Shiraiwa M, Li Y, Tsimpidi AP, Karydis VA, Berkemeier T, Pandis SN, Lelieveld J, Koop T, Pöschl U., Nat Commun 8(), 2017
PMID: 28429776
Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate.
Rastak N, Pajunoja A, Acosta Navarro JC, Ma J, Song M, Partridge DG, Kirkevåg A, Leong Y, Hu WW, Taylor NF, Lambe A, Cerully K, Bougiatioti A, Liu P, Krejci R, Petäjä T, Percival C, Davidovits P, Worsnop DR, Ekman AML, Nenes A, Martin S, Jimenez JL, Collins DR, Topping DO, Bertram AK, Zuend A, Virtanen A, Riipinen I., Geophys Res Lett 44(10), 2017
PMID: 28781391
Revising the hygroscopicity of inorganic sea salt particles.
Zieger P, Väisänen O, Corbin JC, Partridge DG, Bastelberger S, Mousavi-Fard M, Rosati B, Gysel M, Krieger UK, Leck C, Nenes A, Riipinen I, Virtanen A, Salter ME., Nat Commun 8(), 2017
PMID: 28671188
Phase separation in organic aerosol.
Freedman MA., Chem Soc Rev 46(24), 2017
PMID: 29134986
Precise, contactless measurements of the surface tension of picolitre aerosol droplets.
Bzdek BR, Power RM, Simpson SH, Reid JP, Royall CP., Chem Sci 7(1), 2016
PMID: 28758004
Role of nucleation mechanism on the size dependent morphology of organic aerosol.
Altaf MB, Zuend A, Freedman MA., Chem Commun (Camb) 52(59), 2016
PMID: 27356885
Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China.
Cheng Y, Zheng G, Wei C, Mu Q, Zheng B, Wang Z, Gao M, Zhang Q, He K, Carmichael G, Pöschl U, Su H., Sci Adv 2(12), 2016
PMID: 28028539

43 References

Daten bereitgestellt von Europe PubMed Central.

Phase Transitions of Aqueous Atmospheric Particles.
Martin ST., Chem. Rev. 100(9), 2000
PMID: 11777428
An amorphous solid state of biogenic secondary organic aerosol particles.
Virtanen A, Joutsensaari J, Koop T, Kannosto J, Yli-Pirila P, Leskinen J, Makela JM, Holopainen JK, Poschl U, Kulmala M, Worsnop DR, Laaksonen A., Nature 467(7317), 2010
PMID: 20944744
Atmospheric aerosols: composition, transformation, climate and health effects
AUTHOR UNKNOWN, 2005
Deliquescence of small particles
AUTHOR UNKNOWN, 2002
Aerosol size and relative humidity
AUTHOR UNKNOWN, 1958
Nanosize effect on the hygroscopic growth factor of aerosol particles
AUTHOR UNKNOWN, 2006
Prompt deliquescence and efflorescence of aerosol nanoparticles
AUTHOR UNKNOWN, 2006
Size dependence of the structure of organic aerosol.
Veghte DP, Altaf MB, Freedman MA., J. Am. Chem. Soc. 135(43), 2013
PMID: 24125549

AUTHOR UNKNOWN, 1997
Surface tension of liquid He as measured using the vibration modes of a levitated drop
AUTHOR UNKNOWN, 2002
Water activity measurements with single suspended droplets: The NaCl-HO and KCl-HO systems
AUTHOR UNKNOWN, 1986
Thermodynamic properties of aqueous aerosols to high supersaturation: I-measurements of water activity of the system Na−Cl−NO−SO−HO at~298.15K
AUTHOR UNKNOWN, 1997
Über die vermeintliche isomerie des roten und gelben Quecksilbersoxyds und die Oberflächenspannung fester Körper
AUTHOR UNKNOWN, 1900
Studies of concentrated electrolyte solutions using the electrodynamic balance. 3. Solute nucleation
AUTHOR UNKNOWN, 1987
Efflorescence relative humidity of airborne sodium chloride particles: A theoretical investigation
AUTHOR UNKNOWN, 2007
Water activity as the determinant for homogeneous ice nucleation in aqueous solutions
Koop T, Luo B, Tsias A, Peter T., Nature 406(6796), 2000
PMID: 10949298
Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.
Dutcher CS, Wexler AS, Clegg SL., J Phys Chem A 114(46), 2010
PMID: 21043484
Effects of confinement on material behaviour at the nanometre size scale.
AUTHOR UNKNOWN, 2005
Thermodynamic theory of size dependence of melting temperature in metals
AUTHOR UNKNOWN, 1977
Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics
AUTHOR UNKNOWN, 2000
Melting the ice: on the relation between melting temperature and size for nanoscale ice crystals.
Pan D, Liu LM, Slater B, Michaelides A, Wang E., ACS Nano 5(6), 2011
PMID: 21568289
Formation of crystal nuclei in liquid metals
AUTHOR UNKNOWN, 1950
Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles
AUTHOR UNKNOWN, 2011
Mixing of the organic aerosol fractions: liquids as the thermodynamically stable phases
AUTHOR UNKNOWN, 2004
Identification of polymers as major components of atmospheric organic aerosols.
Kalberer M, Paulsen D, Sax M, Steinbacher M, Dommen J, Prevot AS, Fisseha R, Weingartner E, Frankevich V, Zenobi R, Baltensperger U., Science 303(5664), 2004
PMID: 15016998
Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions
AUTHOR UNKNOWN, 2010
Gas uptake and chemical aging of semisolid organic aerosol particles.
Shiraiwa M, Ammann M, Koop T, Poschl U., Proc. Natl. Acad. Sci. U.S.A. 108(27), 2011
PMID: 21690350
A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles
AUTHOR UNKNOWN, 2001
Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, aging and parameterization
AUTHOR UNKNOWN, 2012
Nanosuspensions in drug delivery.
Rabinow BE., Nat Rev Drug Discov 3(9), 2004
PMID: 15340388
The nucleus in and the growth of hygroscopic droplets
AUTHOR UNKNOWN, 1936
Efflorescence relative humidity for ammonium sulfate particles.
Gao Y, Chen SB, Yu LE., J Phys Chem A 110(24), 2006
PMID: 16774203
Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance
AUTHOR UNKNOWN, 1994
Chemical and size effects of hygroscopic aerosols on light scattering coefficients
AUTHOR UNKNOWN, 1996

AUTHOR UNKNOWN, 2006
Thermodynamic Model of the System H−NH−Na−SO−NO−Cl−HO at 298.15K
AUTHOR UNKNOWN, 1998

AUTHOR UNKNOWN, 1997
Thermodynamic properties of aqueous (NH)SO to high supersaturation as a function of temperature
AUTHOR UNKNOWN, 1995
Water activity and activation diameters from hygroscopicity data-Part I: Theory and application to inorganic salts
AUTHOR UNKNOWN, 2005
Ammonium sulfate: equilibrium and metastability phase diagrams from 40 to −50°C
AUTHOR UNKNOWN, 1998
The melting point of ammonium sulfate
AUTHOR UNKNOWN, 1921
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25586967
PubMed | Europe PMC

Suchen in

Google Scholar