Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle Lochmaea capreae

Soudi S, Reinhold K, Engqvist L (2016)
EVOLUTION 70(2): 471-479.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
The fitness of hybrids might be compromised as a result of intrinsic isolation and/or because they fall between ecological niches due to their intermediate phenotypes (extrinsic isolation). Here, we present data from several crosses (parental crosses, F1, F2, and backcrosses) between the two host races of Lochmaea capreae on willow and birch to test for extrinsic isolation, intrinsic isolation, and environmentally dependent genetic incompatibilities. We employed a reciprocal transplant design in which offspring were raised on either host plant and their survival was recorded until adulthood. We also applied joint-scaling analysis to determine the genetic architecture of hybrid inviability. The relative fitness of the backcrosses switched between environments; furthermore, the additive genetic-environment interaction was detected as the strongest effect in our analysis. These results provide strong evidence that divergent natural selection has played a central role in the evolution of hybrid dysfunction between host races. Joint-scaling analysis detected significant negative epistatic effects that are most evident in the poor performance of F2-hybrids on willow, indicating signs of intrinsic isolation. We did not find any evidence that genetic incompatibilities are manifested independently of environmental conditions. Our findings suggest the outcome of natural hybridization between these host races is mainly affected by extrinsic isolation and a weak contribution of intrinsic isolation.
Stichworte
Ecological speciation; hybrid fitness; joint-scaling analysis; epistasis; hybrid breakdown; reproductive isolation
Erscheinungsjahr
2016
Zeitschriftentitel
EVOLUTION
Band
70
Ausgabe
2
Seite(n)
471-479
ISSN
0014-3820
eISSN
1558-5646
Page URI
https://pub.uni-bielefeld.de/record/2902128

Zitieren

Soudi S, Reinhold K, Engqvist L. Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle Lochmaea capreae. EVOLUTION. 2016;70(2):471-479.
Soudi, S., Reinhold, K., & Engqvist, L. (2016). Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle Lochmaea capreae. EVOLUTION, 70(2), 471-479. doi:10.1111/evo.12846
Soudi, Shaghayegh, Reinhold, Klaus, and Engqvist, Leif. 2016. “Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle Lochmaea capreae”. EVOLUTION 70 (2): 471-479.
Soudi, S., Reinhold, K., and Engqvist, L. (2016). Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle Lochmaea capreae. EVOLUTION 70, 471-479.
Soudi, S., Reinhold, K., & Engqvist, L., 2016. Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle Lochmaea capreae. EVOLUTION, 70(2), p 471-479.
S. Soudi, K. Reinhold, and L. Engqvist, “Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle Lochmaea capreae”, EVOLUTION, vol. 70, 2016, pp. 471-479.
Soudi, S., Reinhold, K., Engqvist, L.: Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle Lochmaea capreae. EVOLUTION. 70, 471-479 (2016).
Soudi, Shaghayegh, Reinhold, Klaus, and Engqvist, Leif. “Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle Lochmaea capreae”. EVOLUTION 70.2 (2016): 471-479.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence.
Poveda-Martínez D, Aguirre MB, Logarzo G, Calderón L, de la Colina A, Hight S, Triapitsyn S, Diaz-Soltero H, Hasson E., PLoS One 14(7), 2019
PMID: 31344099
Oviposition traits generate extrinsic postzygotic isolation between two pine sawfly species.
Bendall EE, Vertacnik KL, Linnen CR., BMC Evol Biol 17(1), 2017
PMID: 28103815

56 References

Daten bereitgestellt von Europe PubMed Central.


Arnold, 1998

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Sympatric speciation in phytophagous insects: moving beyond controversy?
Berlocher, Ann. Rev. Entomol. 47(), 2002
Genotype-by-environment interaction and the Dobzhansky-Muller model of postzygotic isolation
Bordenstein, J. Evol. Biol. 14(), 2001
AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons
Burnham, Behav. Ecol. Sociobiol. 65(), 2011
What do we need to know about speciation?
Butlin, Trends Ecol. Evol. 27(), 2012
Is Wright's shifting balance process important in evolution?
Coyne JA, Barton NH, Turelli M., Evolution 54(1), 2000
PMID: 10937209

Coyne, 2004

Dobzhansky, 1937
Host races in plant-feeding insects and their importance in sympatric speciation
Drès, Phil. Trans. R. Soc. Lon. B 357(), 2002
Ecologically dependent postmating isolation between sympatric host forms of Neochlamisus bebbianae leaf beetles
Egan, Proc. Nat. Acad. Sci. USA 106(), 2009
Interpopulation hybrid breakdown maps to the mitochondrial genome.
Ellison CK, Burton RS., Evolution 62(3), 2007
PMID: 18081717
Epistasis and its consequences for the evolution of natural populations.
Fenster CB, Galloway LF, Chao L., Trends Ecol. Evol. (Amst.) 12(7), 1997
PMID: 21238076
Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella.
Filchak KE, Roethele JB, Feder JL., Nature 407(6805), 2000
PMID: 11048719
Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa
Funk, Proc. Nat. Acad. Sci. USA 103(), 2006
Reconstructing the origin of Helianthus deserticola: survival and selection on the desert floor.
Gross BL, Kane NC, Lexer C, Ludwig F, Rosenthal DM, Donovan LA, Rieseberg LH., Am. Nat. 164(2), 2004
PMID: 15278840
The language of speciation.
Harrison RG., Evolution 66(12), 2012
PMID: 23206125
Ecological speciation in sticklebacks: environment-dependent hybrid fitness
Hatfield, Evolution 53(), 1999
Gene geography of racial differences in Lochmaea capreae L. (Coleoptera, Chrysomelidae), and the problem of sympatric speciation
Kreslavskiy, Entomol. Rev. 73(), 1994
Detection of ecological hybrid inviability in a pair of sympatric phytophagous ladybird beetles (Henosepilachna spp.)
Kuwajima Masakazu, Kobayashi Norio, Katoh Toru, Katakura Haruo., Entomol. Exp. Appl. 134(3), 2010
PMID: IND44319379
The genetic interpretation of inbreeding depression and outbreeding depression
Lynch, Evolution 45(), 1991

Lynch, 1998

Mayr, 1942
Isolating mechanisms, evolution and temperature
Muller, Biol. Symp. 6(), 1942
Widespread host-dependent hybrid unfitness in the pea aphid species complex
Peccoud, Evolution 36(), 2014

AUTHOR UNKNOWN, 0
Ecological speciation
Rundle, Ecol. Lett. 8(), 2005
A genetic interpretation of ecologically dependent isolation.
Rundle HD, Whitlock MC., Evolution 55(1), 2001
PMID: 11263739

Schluter, 2000
Ecology and the origin of species.
Schluter D., Trends Ecol. Evol. (Amst.) 16(7), 2001
PMID: 11403870
Evidence for ecological speciation and its alternative.
Schluter D., Science 323(5915), 2009
PMID: 19197053
Genetics and ecological speciation
Schluter, Proc. Nat. Acad. Sci. USA 106(), 2009
Genomics and the origin of species.
Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel CL, Saetre GP, Bank C, Brannstrom A, Brelsford A, Clarkson CS, Eroukhmanoff F, Feder JL, Fischer MC, Foote AD, Franchini P, Jiggins CD, Jones FC, Lindholm AK, Lucek K, Maan ME, Marques DA, Martin SH, Matthews B, Meier JI, Most M, Nachman MW, Nonaka E, Rennison DJ, Schwarzer J, Watson ET, Westram AM, Widmer A., Nat. Rev. Genet. 15(3), 2014
PMID: 24535286

Simpson, 1955
The biology of speciation
Sobel, Evolution 64(), 2009
When can ecological speciation be detected with neutral loci?
Thibert-Plante X, Hendry AP., Mol. Ecol. 19(11), 2010
PMID: 20465581
Theory and speciation.
Turelli M, Barton NH, Coyne JA., Trends Ecol. Evol. (Amst.) 16(7), 2001
PMID: 11403865
Natural selection in action during speciation
Via, Proc. Nat. Acad. Sci. USA 106(), 2009
Adaptive speciation theory: a conceptual review.
Weissing FJ, Edelaar P, van Doorn GS., Behav. Ecol. Sociobiol. (Print) 65(3), 2011
PMID: 21423338
Multiple fitness peaks and epistasis
Whitlock, Ann. Rev. Ecol. Syst. 26(), 1995
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26882317
PubMed | Europe PMC

Suchen in

Google Scholar