Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect

Brodehl A, Dieding M, Biere N, Unger A, Klauke B, Walhorn V, Gummert J, Schulz U, Linke WA, Gerull B, Vorgert M, et al. (2016)
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY 91: 207-214.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Background: Dilated cardiomyopathy (DCM) could be caused by mutations in more than 40 different genes. However, the pathogenic impact of specific mutations is in most cases unknown complicating the genetic counseling of affected families. Therefore, functional studies could contribute to distinguish pathogenic mutations and benign variants. Here, we present a novel heterozygous DES missense variant (c.407C > T; p.L136P) identified by next generation sequencing in a DCM patient. DES encodes the cardiac intermediate filament protein desmin, which has important functions in mechanical stabilization and linkage of the cell structures in cardiomyocytes. Methods and results: Cell transfection experiments and assembly assays of recombinant desmin in combination with atomic force microscopy were used to investigate the impact of this novel DES variant on filament formation. Desmin-p.L136P forms cytoplasmic aggregates indicating a severe intrinsic filament assembly defect of this mutant. Co-transfection experiments of wild-type and mutant desmin conjugated to different fluorescence proteins revealed a dominant affect of this mutant on filament assembly. These experiments were complemented by apertureless scanning near-field optical microscopy. Conclusion: In vitro analysis demonstrated that desmin-p.L136P is unable to form regular filaments and accumulate instead within the cytoplasm. Therefore, we classified DES-p.L136P as a likely pathogenic mutation. In conclusion, the functional characterization of DES-p.L136P might have relevance for the genetic counseling of affected families with similar DES mutations and could contribute to distinguish pathogenic mutations from benign rare variants. (C) 2016 Elsevier Ltd. All rights reserved.
Stichworte
Desmin; Intermediate filaments; Dilated cardiomyopathy; Myofibrillar; myopathy; Desmosomes
Erscheinungsjahr
2016
Zeitschriftentitel
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY
Band
91
Seite(n)
207-214
ISSN
0022-2828
eISSN
1095-8584
Page URI
https://pub.uni-bielefeld.de/record/2902127

Zitieren

Brodehl A, Dieding M, Biere N, et al. Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY. 2016;91:207-214.
Brodehl, A., Dieding, M., Biere, N., Unger, A., Klauke, B., Walhorn, V., Gummert, J., et al. (2016). Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 91, 207-214. doi:10.1016/j.yjmcc.2015.12.015
Brodehl, A., Dieding, M., Biere, N., Unger, A., Klauke, B., Walhorn, V., Gummert, J., Schulz, U., Linke, W. A., Gerull, B., et al. (2016). Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY 91, 207-214.
Brodehl, A., et al., 2016. Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 91, p 207-214.
A. Brodehl, et al., “Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect”, JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, vol. 91, 2016, pp. 207-214.
Brodehl, A., Dieding, M., Biere, N., Unger, A., Klauke, B., Walhorn, V., Gummert, J., Schulz, U., Linke, W.A., Gerull, B., Vorgert, M., Anselmetti, D., Milting, H.: Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY. 91, 207-214 (2016).
Brodehl, Andreas, Dieding, Mareike, Biere, Niklas, Unger, Andreas, Klauke, Baerbel, Walhorn, Volker, Gummert, Jan, Schulz, Uwe, Linke, Wolfgang A., Gerull, Brenda, Vorgert, Matthias, Anselmetti, Dario, and Milting, Hendrik. “Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect”. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY 91 (2016): 207-214.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26724190
PubMed | Europe PMC

Suchen in

Google Scholar