Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches

Hassenrück C, Fink A, Lichtschlag A, Tegetmeyer H, de Beer D, Ramette A (2016)
FEMS Microbiology Ecology 92(5): fiw027.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Hassenrück, Christiane; Fink, Artur; Lichtschlag, Anna; Tegetmeyer, HalinaUniBi ; de Beer, Dirk; Ramette, Alban
Abstract / Bemerkung
To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO2-rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO2-rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO2 seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases in Chloroflexi sequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects.
Erscheinungsjahr
2016
Zeitschriftentitel
FEMS Microbiology Ecology
Band
92
Ausgabe
5
Art.-Nr.
fiw027
ISSN
0168-6496
eISSN
1574-6941
Page URI
https://pub.uni-bielefeld.de/record/2902052

Zitieren

Hassenrück C, Fink A, Lichtschlag A, Tegetmeyer H, de Beer D, Ramette A. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches. FEMS Microbiology Ecology. 2016;92(5): fiw027.
Hassenrück, C., Fink, A., Lichtschlag, A., Tegetmeyer, H., de Beer, D., & Ramette, A. (2016). Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches. FEMS Microbiology Ecology, 92(5), fiw027. doi:10.1093/femsec/fiw027
Hassenrück, C., Fink, A., Lichtschlag, A., Tegetmeyer, H., de Beer, D., and Ramette, A. (2016). Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches. FEMS Microbiology Ecology 92:fiw027.
Hassenrück, C., et al., 2016. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches. FEMS Microbiology Ecology, 92(5): fiw027.
C. Hassenrück, et al., “Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches”, FEMS Microbiology Ecology, vol. 92, 2016, : fiw027.
Hassenrück, C., Fink, A., Lichtschlag, A., Tegetmeyer, H., de Beer, D., Ramette, A.: Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches. FEMS Microbiology Ecology. 92, : fiw027 (2016).
Hassenrück, Christiane, Fink, Artur, Lichtschlag, Anna, Tegetmeyer, Halina, de Beer, Dirk, and Ramette, Alban. “Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches”. FEMS Microbiology Ecology 92.5 (2016): fiw027.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives.
McAllister SM, Moore RM, Gartman A, Luther GW, Emerson D, Chan CS., FEMS Microbiol Ecol 95(4), 2019
PMID: 30715272
CO2 leakage alters biogeochemical and ecological functions of submarine sands.
Molari M, Guilini K, Lott C, Weber M, de Beer D, Meyer S, Ramette A, Wegener G, Wenzhöfer F, Martin D, Cibic T, De Vittor C, Vanreusel A, Boetius A., Sci Adv 4(2), 2018
PMID: 29441359
Bacterial Abundance and Community Composition in Pond Water From Shrimp Aquaculture Systems With Different Stocking Densities.
Alfiansah YR, Hassenrück C, Kunzmann A, Taslihan A, Harder J, Gärdes A., Front Microbiol 9(), 2018
PMID: 30405548
Environmental Drivers of Free-Living vs. Particle-Attached Bacterial Community Composition in the Mauritania Upwelling System.
Bachmann J, Heimbach T, Hassenrück C, Kopprio GA, Iversen MH, Grossart HP, Gärdes A., Front Microbiol 9(), 2018
PMID: 30532746
Low pH reduces the virulence of black band disease on Orbicella faveolata.
Muller EM, Leporacci NM, Macartney KJ, Shea AG, Crane RE, Hall ER, Ritchie KB., PLoS One 12(6), 2017
PMID: 28570712
Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments.
Currie AR, Tait K, Parry H, de Francisco-Mora B, Hicks N, Osborn AM, Widdicombe S, Stahl H., Front Microbiol 8(), 2017
PMID: 28878754
Potential impact of global climate change on benthic deep-sea microbes.
Danovaro R, Corinaldesi C, Dell'Anno A, Rastelli E., FEMS Microbiol Lett 364(23), 2017
PMID: 29045616

69 References

Daten bereitgestellt von Europe PubMed Central.

Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA., Appl. Environ. Microbiol. 56(6), 1990
PMID: 2200342
Global declines in oceanic nitrification rates as a consequence of ocean acidification.
Beman JM, Chow CE, King AL, Feng Y, Fuhrman JA, Andersson A, Bates NR, Popp BN, Hutchins DA., Proc. Natl. Acad. Sci. U.S.A. 108(1), 2010
PMID: 21173255
Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini Y, Hochberg Y., 1995
Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family.
Bernardet JF, Nakagawa Y, Holmes B; Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes., Int. J. Syst. Evol. Microbiol. 52(Pt 3), 2002
PMID: 12054224
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Sulfur-oxidizing bacterial populations within cyanobacterial dominated coral disease lesions.
Bourne DG, van der Zee MJ, Botte ES, Sato Y., Environ Microbiol Rep 5(4), 2013
PMID: 23864565
Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification.
Braeckman U, Van Colen C, Guilini K, Van Gansbeke D, Soetaert K, Vincx M, Vanaverbeke J., PLoS ONE 9(10), 2014
PMID: 25329898
Bacterial abundance, processes and diversity responses to acidification at a coastal CO2 vent.
Burrell TJ, Maas EW, Hulston DA, Law CS., FEMS Microbiol. Lett. 362(18), 2015
PMID: 26337149
The seaweed holobiont: understanding seaweed-bacteria interactions.
Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T., FEMS Microbiol. Rev. 37(3), 2012
PMID: 23157386
Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations
Fabricius KE, Langdon C, Uthicke S., 2011
Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean.
Gazeau F, van Rijswijk P, Pozzato L, Middelburg JJ., PLoS ONE 9(4), 2014
PMID: 24718610
Hydrothermal processes
German CR, von KL., 2003
Nucleic acid-based approaches to investigate microbial-related cheese quality defects.
O'Sullivan DJ, Giblin L, McSweeney PL, Sheehan JJ, Cotter PD., Front Microbiol 4(), 2013
PMID: 23346082
Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.
Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC., Nature 454(7200), 2008
PMID: 18536730
Beyond biogeographic patterns: processes shaping the microbial landscape.
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB., Nat. Rev. Microbiol. 10(7), 2012
PMID: 22580365
The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective
Hofmann GE, Barry JP, Edmunds PJ., 2010

Husson F, Josse J, Le S., 2015

AUTHOR UNKNOWN, 2013
Will ocean acidification affect marine microbes?
Joint I, Doney SC, Karl DM., ISME J 5(1), 2010
PMID: 20535222
Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.
Kerfahi D, Hall-Spencer JM, Tripathi BM, Milazzo M, Lee J, Adams JM., Microb. Ecol. 67(4), 2014
PMID: 24493461
Impact of ocean acidification on benthic and water column ammonia oxidation
Kitidis V, Laverock B, McNeill LC., 2011
Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO., Nucleic Acids Res. 41(1), 2012
PMID: 22933715
Climate change and ocean acidification effects on seagrasses and marine macroalgae.
Koch M, Bowes G, Ross C, Zhang XH., Glob Chang Biol 19(1), 2012
PMID: 23504724
Microbial sulphate reduction at a low pH.
Koschorreck M., FEMS Microbiol. Ecol. 64(3), 2008
PMID: 18445022
Small changes in pH have direct effects on marine bacterial community composition: a microcosm approach.
Krause E, Wichels A, Gimenez L, Lunau M, Schilhabel MB, Gerdts G., PLoS ONE 7(10), 2012
PMID: 23071704
Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites
Krumbein WE, Giele C., 1979
Family I. Desulfobacteraceae
Kuever J, Rainey FA, Widdel F., 2005
Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification.
Laverock B, Kitidis V, Tait K, Gilbert JA, Osborn AM, Widdicombe S., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368(1627), 2013
PMID: 23980243
Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea.
Lindh MV, Riemann L, Baltar F, Romero-Oliva C, Salomon PS, Graneli E, Pinhassi J., Environ Microbiol Rep 5(2), 2012
PMID: 23584969
Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning
Liu J, Weinbauer M, Maier C., 2010
Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic
Lomas M, Hopkinson B, Losh J., 2012
Swarm: robust and fast clustering method for amplicon-based studies.
Mahe F, Rognes T, Quince C, de Vargas C, Dunthorn M., PeerJ 2(), 2014
PMID: 25276506
Cutadapt removes adapter sequences from high-throughput sequencing reads
Martin M.., 2011
Defluvicoccus vanus gen. nov., sp. nov., a novel Gram-negative coccus/coccobacillus in the 'Alphaproteobacteria' from activated sludge.
Maszenan AM, Seviour RJ, Patel BK, Janssen PH, Wanner J., Int. J. Syst. Evol. Microbiol. 55(Pt 5), 2005
PMID: 16166717
Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy).
Maugeri TL, Lentini V, Gugliandolo C, Italiano F, Cousin S, Stackebrandt E., Extremophiles 13(1), 2008
PMID: 19050821
The impact of reduced pH on the microbial community of the coral Acropora eurystoma.
Meron D, Atias E, Iasur Kruh L, Elifantz H, Minz D, Fine M, Banin E., ISME J 5(1), 2010
PMID: 20668489
Prokaryotic populations in arsenic-rich shallow-sea hydrothermal sediments of Ambitle Island, Papua New Guinea
Meyer-Dombard DR, Price RE, Pichler T., 2012
Caldithrix palaeochoryensis sp. nov., a thermophilic, anaerobic, chemo-organotrophic bacterium from a geothermally heated sediment, and emended description of the genus Caldithrix.
Miroshnichenko ML, Kolganova TV, Spring S, Chernyh N, Bonch-Osmolovskaya EA., Int. J. Syst. Evol. Microbiol. 60(Pt 9), 2009
PMID: 19854873
Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage.
Miroshnichenko ML, Kostrikina NA, Chernyh NA, Pimenov NV, Tourova TP, Antipov AN, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA., Int. J. Syst. Evol. Microbiol. 53(Pt 1), 2003
PMID: 12656191
Natural volcanic CO seeps reveal future trajectories for host-microbial associations in corals and sponges
Morrow KM, Bourne DG, Humphrey C., 2014
Behavioural impairment in reef fishes caused by ocean acidification at CO seeps
Munday PL, Cheal AJ, Dixson DL., 2014
The response of marine picoplankton to ocean acidification.
Newbold LK, Oliver AE, Booth T, Tiwari B, Desantis T, Maguire M, Andersen G, van der Gast CJ, Whiteley AS., Environ. Microbiol. 14(9), 2012
PMID: 22591022

Oksanen J, Blanchet FG, Kindt R., 2015
Marine bacterial communities are resistant to elevated carbon dioxide levels.
Oliver AE, Newbold LK, Whiteley AS, van der Gast CJ., Environ Microbiol Rep 6(6), 2014
PMID: 25756110
Acidification increases microbial polysaccharide degradation in the ocean
Piontek J, Lunau M, Händel N., 2010
SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.
Pruesse E, Peplies J, Glockner FO., Bioinformatics 28(14), 2012
PMID: 22556368
Changes in microbial communities in coastal sediments along natural CO2 gradients at a volcanic vent in Papua New Guinea.
Raulf FF, Fabricius K, Uthicke S, de Beer D, Abed RM, Ramette A., Environ. Microbiol. 17(10), 2015
PMID: 25471738
Generic assignments, strain histories and properties of pure cultures of cyanobacteria
Rippka R, Deruelles J, Waterbury JB., 1979
Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms
Roy A-S, Gibbons SM, Schunck H., 2013
Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea.
Schottner S, Pfitzner B, Grunke S, Rasheed M, Wild C, Ramette A., Environ. Microbiol. 13(7), 2011
PMID: 21554515
Structure and function of the global ocean microbiome
Sunagawa S, Coelho LP, Chaffron S., 2015
Response of an arctic sediment nitrogen cycling community to increased CO
Tait K, Laverock B, Widdicombe S., 2013
Minor impact of ocean acidification to the composition of the active microbial community in an Arctic sediment.
Tait K, Laverock B, Shaw J, Somerfield PJ, Widdicombe S., Environ Microbiol Rep 5(6), 2013
PMID: 24249294
Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient.
Taylor JD, Ellis R, Milazzo M, Hall-Spencer JM, Cunliffe M., FEMS Microbiol. Ecol. 89(3), 2014
PMID: 24939799

Van KG, Tolosana R, Bren M., 2014
Trace element bias in the use of CO-vents as analogues for low-pH environments: implications for contamination levels in acidified oceans
Vizzini S, Di R, Costa V., 2013
In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece
Wenzhöfer F, Holby O, Glud RN., 2000
Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef.
Witt V, Wild C, Anthony KR, Diaz-Pulido G, Uthicke S., Environ. Microbiol. 13(11), 2011
PMID: 21906222
PEAR: a fast and accurate Illumina Paired-End reAd mergeR.
Zhang J, Kobert K, Flouri T, Stamatakis A., Bioinformatics 30(5), 2013
PMID: 24142950

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26887661
PubMed | Europe PMC

Suchen in

Google Scholar