Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane

Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka H, Adam B, Berg JS, Knittel K, Tegetmeyer H, Boetius A, Wegener G (2016)
Environmental Microbiology 18(9: SI): 3073-3091.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Krukenberg, Viola; Harding, Katie; Richter, Michael; Glöckner, Frank Oliver; Gruber-Vodicka, Harald; Adam, Birgit; Berg, Jasmine S.; Knittel, Katrin; Tegetmeyer, HalinaUniBi ; Boetius, Antje; Wegener, Gunter
Abstract / Bemerkung
The anaerobic oxidation of methane (AOM) is mediated by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. In thermophilic AOM consortia enriched from Guaymas Basin, members of the ANME-1 clade are associated with bacteria of the HotSeep-1 cluster, which likely perform direct electron exchange via nanowires. The partner bacterium was enriched with hydrogen as sole electron donor and sulfate as electron acceptor. Based on phylogenetic, genomic and metabolic characteristics we propose to name this chemolithoautotrophic sulfate reducer Candidatus Desulfofervidus auxilii. Ca. D. auxilii grows on hydrogen at temperatures between 50°C and 70°C with an activity optimum at 60°C and doubling time of 4-6 days. Its genome draft encodes for canonical sulfate reduction, periplasmic and soluble hydrogenases and autotrophic carbon fixation via the reductive tricarboxylic acid cycle. The presence of genes for pili formation and cytochromes, and their similarity to genes of Geobacter spp., indicate a potential for syntrophic growth via direct interspecies electron transfer when the organism grows in consortia with ANME. This first ANME-free enrichment of an AOM partner bacterium and its characterization opens the perspective for a deeper understanding of syntrophy in anaerobic methane oxidation.
Environmental Microbiology
9: SI
3073 - 3091
Page URI


Krukenberg V, Harding K, Richter M, et al. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environmental Microbiology. 2016;18(9: SI):3073-3091.
Krukenberg, V., Harding, K., Richter, M., Glöckner, F. O., Gruber-Vodicka, H., Adam, B., Berg, J. S., et al. (2016). Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environmental Microbiology, 18(9: SI), 3073-3091. doi:10.1111/1462-2920.13283
Krukenberg, Viola, Harding, Katie, Richter, Michael, Glöckner, Frank Oliver, Gruber-Vodicka, Harald, Adam, Birgit, Berg, Jasmine S., et al. 2016. “Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane”. Environmental Microbiology 18 (9: SI): 3073-3091.
Krukenberg, V., Harding, K., Richter, M., Glöckner, F. O., Gruber-Vodicka, H., Adam, B., Berg, J. S., Knittel, K., Tegetmeyer, H., Boetius, A., et al. (2016). Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environmental Microbiology 18, 3073-3091.
Krukenberg, V., et al., 2016. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environmental Microbiology, 18(9: SI), p 3073-3091.
V. Krukenberg, et al., “Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane”, Environmental Microbiology, vol. 18, 2016, pp. 3073-3091.
Krukenberg, V., Harding, K., Richter, M., Glöckner, F.O., Gruber-Vodicka, H., Adam, B., Berg, J.S., Knittel, K., Tegetmeyer, H., Boetius, A., Wegener, G.: Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environmental Microbiology. 18, 3073-3091 (2016).
Krukenberg, Viola, Harding, Katie, Richter, Michael, Glöckner, Frank Oliver, Gruber-Vodicka, Harald, Adam, Birgit, Berg, Jasmine S., Knittel, Katrin, Tegetmeyer, Halina, Boetius, Antje, and Wegener, Gunter. “Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane”. Environmental Microbiology 18.9: SI (2016): 3073-3091.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Contrasting Pathways for Anaerobic Methane Oxidation in Gulf of Mexico Cold Seep Sediments.
Vigneron A, Alsop EB, Cruaud P, Philibert G, King B, Baksmaty L, Lavallee D, Lomans BP, Eloe-Fadrosh E, Kyrpides NC, Head IM, Tsesmetzis N., mSystems 4(1), 2019
PMID: 30834326
Asgard archaea capable of anaerobic hydrocarbon cycling.
Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, Teske AP, Ettema TJG, Baker BJ., Nat Commun 10(1), 2019
PMID: 31015394
Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms.
Walker DJ, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, Lovley DR., ISME J 12(1), 2018
PMID: 28872631
Anaerobic methanotrophic communities thrive in deep submarine permafrost.
Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R, Grigoriev MN, Knoblauch C, Mangelsdorf K, Wagner D, Liebner S., Sci Rep 8(1), 2018
PMID: 29358665
Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas.
Marlow JJ, Kumar A, Enalls BC, Reynard LM, Tuross N, Stephanopoulos G, Girguis P., Biotechnol Bioeng 115(6), 2018
PMID: 29460958
Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia.
Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, Wegener G., Environ Microbiol 20(5), 2018
PMID: 29468803
Subgroup Characteristics of Marine Methane-Oxidizing ANME-2 Archaea and Their Syntrophic Partners as Revealed by Integrated Multimodal Analytical Microscopy.
McGlynn SE, Chadwick GL, O'Neill A, Mackey M, Thor A, Deerinck TJ, Ellisman MH, Orphan VJ., Appl Environ Microbiol 84(11), 2018
PMID: 29625978
Reverse Methanogenesis and Respiration in Methanotrophic Archaea.
Timmers PH, Welte CU, Koehorst JJ, Plugge CM, Jetten MS, Stams AJ., Archaea 2017(), 2017
PMID: 28154498
The life sulfuric: microbial ecology of sulfur cycling in marine sediments.
Wasmund K, Mußmann M, Loy A., Environ Microbiol Rep 9(4), 2017
PMID: 28419734
Syntrophy Goes Electric: Direct Interspecies Electron Transfer.
Lovley DR., Annu Rev Microbiol 71(), 2017
PMID: 28697668
Thermophilic archaea activate butane via alkyl-coenzyme M formation.
Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow HH, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F., Nature 539(7629), 2016
PMID: 27749816

104 References

Daten bereitgestellt von Europe PubMed Central.

Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents.
Alazard D, Dukan S, Urios A, Verhe F, Bouabida N, Morel F, Thomas P, Garcia JL, Ollivier B., Int. J. Syst. Evol. Microbiol. 53(Pt 1), 2003
PMID: 12656169
Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)).
Anderson I, Saunders E, Lapidus A, Nolan M, Lucas S, Tice H, Del Rio TG, Cheng JF, Han C, Tapia R, Goodwin LA, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Chang YJ, Brambilla EM, Rohde M, Spring S, Goker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP., Stand Genomic Sci 6(2), 2012
PMID: 22768359
Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent.
Audiffrin C, Cayol JL, Joulian C, Casalot L, Thomas P, Garcia JL, Ollivier B., Int. J. Syst. Evol. Microbiol. 53(Pt 5), 2003
PMID: 13130052
SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA., J. Comput. Biol. 19(5), 2012
PMID: 22506599
The Pfam protein families database.
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681378
Non-classical protein secretion in bacteria
Bendtsen, BMC Microbiol 13(), 2005
Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments.
Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A., ISME J 6(5), 2011
PMID: 22094346
Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase.
Biegel E, Muller V., Proc. Natl. Acad. Sci. U.S.A. 107(42), 2010
PMID: 20921383
Seafloor oxygen consumption fuelled by methane from cold seeps
Boetius, Nat Geosci 6(), 2013
A marine microbial consortium apparently mediating anaerobic oxidation of methane.
Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O., Nature 407(6804), 2000
PMID: 11034209
Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. J Gen
Brandis, Microbiol 126(), 1981
Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov
Brysch, Arch Microbiol 148(), 1987
A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria
Cord-Ruwisch, J Microbiol Methods 4(), 1985
Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture
Cypionka, Arch Microbiol 143(), 1986
Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.
Dekas AE, Poretsky RS, Orphan VJ., Science 326(5951), 2009
PMID: 19833965
Identifying bacterial genes and endosymbiont DNA with Glimmer.
Delcher AL, Bratke KA, Powers EC, Salzberg SL., Bioinformatics 23(6), 2007
PMID: 17237039
Archaea in coastal marine environments.
DeLong EF., Proc. Natl. Acad. Sci. U.S.A. 89(12), 1992
PMID: 1608980
Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin.
Dowell F, Cardman Z, Dasarathy S, Kellermann MY, Lipp JS, Ruff SE, Biddle JF, McKay LJ, MacGregor BJ, Lloyd KG, Albert DB, Mendlovitz H, Hinrichs KU, Teske A., Front Microbiol 7(), 2016
PMID: 26858698
Complete genome sequence of the hyperthermophilic sulfate-reducing bacterium Thermodesulfobacterium geofontis OPF15T. Genome
Elkins, Announc 1(), 2013
Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism.
Grein F, Ramos AR, Venceslau SS, Pereira IA., Biochim. Biophys. Acta 1827(2), 2012
PMID: 22982583
Reverse methanogenesis: testing the hypothesis with environmental genomics.
Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF., Science 305(5689), 2004
PMID: 15353801
Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium
Hoehler, Global Biogeochem Cycles 8(), 1994
Thermophilic anaerobic oxidation of methane by marine microbial consortia.
Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs KU, Teske A, Boetius A, Wegener G., ISME J 5(12), 2011
PMID: 21697963
Complete genome sequence of the thermophilic sulfur-reducer Hippea maritima type strain (MH(2)).
Huntemann M, Lu M, Nolan M, Lapidus A, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Detter JC, Brambilla EM, Rohde M, Spring S, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Mavromatis K., Stand Genomic Sci 4(3), 2011
PMID: 21886857
Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent site (Gulf of California)
Jørgensen, Deep Sea Res Part A Oceanogr Res Pap 37(), 1990
Isolation of strictly thermophilic and obligately autotrophic hydrogen bacteria
Kawasumi, Agric Biol Chem 44(), 1980
Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities.
Kellermann MY, Wegener G, Elvert M, Yoshinaga MY, Lin YS, Holler T, Mollar XP, Knittel K, Hinrichs KU., Proc. Natl. Acad. Sci. U.S.A. 109(47), 2012
PMID: 23129626
Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes.
Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M., J. Bacteriol. 183(20), 2001
PMID: 11567003
Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.
Kleindienst S, Ramette A, Amann R, Knittel K., Environ. Microbiol. 14(10), 2012
PMID: 22882476
Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria
Kniemeyer, Nature 449(6), 2007
Anaerobic oxidation of methane: progress with an unknown process.
Knittel K, Boetius A., Annu. Rev. Microbiol. 63(), 2009
PMID: 19575572
Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon)
Knittel, Geomicrobiol J 20(), 2003
Isolation of thermophilic obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophiles, from Icelandic hot springs
Kristjansson, Arch Microbiol 140(), 1985
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
RNAmmer: consistent and rapid annotation of ribosomal RNA genes.
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW., Nucleic Acids Res. 35(9), 2007
PMID: 17452365
Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy.
Letunic I, Bork P., Nucleic Acids Res. 39(Web Server issue), 2011
PMID: 21470960
ARB: a software environment for sequence data.
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH., Nucleic Acids Res. 32(4), 2004
PMID: 14985472
Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy.
Malvankar NS, Yalcin SE, Tuominen MT, Lovley DR., Nat Nanotechnol 9(12), 2014
PMID: 25326694
Structural basis for metallic-like conductivity in microbial nanowires.
Malvankar NS, Vargas M, Nevin K, Tremblay PL, Evans-Lutterodt K, Nykypanchuk D, Martz E, Tuominen MT, Lovley DR., MBio 6(2), 2015
PMID: 25736881
Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel.
Massana R, Murray AE, Preston CM, DeLong EF., Appl. Environ. Microbiol. 63(1), 1997
PMID: 8979338
Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.
Matias PM, Pereira IA, Soares CM, Carrondo MA., Prog. Biophys. Mol. Biol. 89(3), 2004
PMID: 15950057
Single cell activity reveals direct electron transfer in methanotrophic consortia.
McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ., Nature 526(7574), 2015
PMID: 26375009
The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth.
McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP., Proc. Natl. Acad. Sci. U.S.A. 104(18), 2007
PMID: 17442750
Syntrophy in anaerobic global carbon cycles.
McInerney MJ, Sieber JR, Gunsalus RP., Curr. Opin. Biotechnol. 20(6), 2009
PMID: 19897353
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.
Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB., Science 297(5583), 2002
PMID: 12169733
Zero-valent sulphur is a key intermediate in marine methane oxidation.
Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM., Nature 491(7425), 2012
PMID: 23135396
Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia.
Milucka J, Widdel F, Shima S., Environ. Microbiol. 15(5), 2012
PMID: 23095164
Methyl sulfides as intermediates in the anaerobic oxidation of methane.
Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH., Environ. Microbiol. 10(1), 2007
PMID: 17903217
InterPro, progress and status in 2005.
Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher P, Cerutti L, Copley R, Courcelle E, Das U, Durbin R, Fleischmann W, Gough J, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McDowall J, Mitchell A, Nikolskaya AN, Orchard S, Pagni M, Ponting CP, Quevillon E, Selengut J, Sigrist CJ, Silventoinen V, Studholme DJ, Vaughan R, Wu CH., Nucleic Acids Res. 33(Database issue), 2005
PMID: 15608177
Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi) sulfite reductases
Müller, Int J Syst Evol Microbiol 9(), 2014
Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.
Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter M, Klages M, Foucher JP, Boetius A., Nature 443(7113), 2006
PMID: 17051217
Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.
Orphan VJ, Hinrichs KU, Ussler W 3rd, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF., Appl. Environ. Microbiol. 67(4), 2001
PMID: 11282650
Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis.
Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF., Science 293(5529), 2001
PMID: 11463914
CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW., Genome Res. 25(7), 2015
PMID: 25977477
A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea.
Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS., Front Microbiol 2(), 2011
PMID: 21747791
Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria.
Pernthaler A, Amann R., Appl. Environ. Microbiol. 70(9), 2004
PMID: 15345429
SignalP 4.0: discriminating signal peptides from transmembrane regions.
Petersen TN, Brunak S, von Heijne G, Nielsen H., Nat. Methods 8(10), 2011
PMID: 21959131
A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774.
Pires RH, Lourenco AI, Morais F, Teixeira M, Xavier AV, Saraiva LM, Pereira IA., Biochim. Biophys. Acta 1605(1-3), 2003
PMID: 12907302
SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.
Pruesse E, Peplies J, Glockner FO., Bioinformatics 28(14), 2012
PMID: 22556368

The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23193283

Rabus, 2006
JCoast - a biologist-centric software tool for data mining and comparison of prokaryotic (meta)genomes.
Richter M, Lombardot T, Kostadinov I, Kottmann R, Duhaime MB, Peplies J, Glockner FO., BMC Bioinformatics 9(), 2008
PMID: 18380896
Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.
Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR., Appl. Environ. Microbiol. 80(15), 2014
PMID: 24837373
Global dispersion and local diversification of the methane seep microbiome.
Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A., Proc. Natl. Acad. Sci. U.S.A. 112(13), 2015
PMID: 25775520
Improved dsrA-based terminal restriction fragment length polymorphism analysis of sulfate-reducing bacteria.
Santillano D, Boetius A, Ramette A., Appl. Environ. Microbiol. 76(15), 2010
PMID: 20543035
Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrgenophilus
Schauder, Arch Microbiol 3(), 1987
Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase.
Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W., Mol. Gen. Genet. 241(5-6), 1993
PMID: 8264535
Flagellum mediates symbiosis.
Shimoyama T, Kato S, Ishii S, Watanabe K., Science 323(5921), 2009
PMID: 19299611
Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation.
Sieber JR, McInerney MJ, Gunsalus RP., Annu. Rev. Microbiol. 66(), 2012
PMID: 22803797
Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide.
Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, Henne A, Fricke WF, Martinez-Arias R, Bartels D, Goesmann A, Krause L, Puhler A, Klenk HP, Richter M, Schuler M, Glockner FO, Meyerdierks A, Gottschalk G, Amann R., Environ. Microbiol. 11(5), 2009
PMID: 19187283
Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria.
Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR., Science 330(6009), 2010
PMID: 21127257
The COG database: an updated version includes eukaryotes
Tatusov, BMC Bioinformatics 14(), 2003
Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.
Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW., Appl. Environ. Microbiol. 68(4), 2002
PMID: 11916723
Methanogenic archaea: ecologically relevant differences in energy conservation.
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R., Nat. Rev. Microbiol. 6(8), 2008
PMID: 18587410
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information
Vaidya, Cladistics 27(), 2011
The "bacterial heterodisulfide" DsrC is a key protein in dissimilatory sulfur metabolism.
Venceslau SS, Stockdreher Y, Dahl C, Pereira IA., Biochim. Biophys. Acta 1837(7), 2014
PMID: 24662917
Bacterial communities and syntrophic associations involved in anaerobic oxidation of methane process of the Sonora Margin cold seeps, Guaymas Basin.
Vigneron A, Cruaud P, Pignet P, Caprais JC, Gayet N, Cambon-Bonavita MA, Godfroy A, Toffin L., Environ. Microbiol. 16(9), 2013
PMID: 24238139
Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration.
Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA., J. Bacteriol. 180(11), 1998
PMID: 9603890
Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
Wegener G, Niemann H, Elvert M, Hinrichs KU, Boetius A., Environ. Microbiol. 10(9), 2008
PMID: 18498367
Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.
Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A., Nature 526(7574), 2015
PMID: 26490622
Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane.
Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K., Front Microbiol 7(), 2016
PMID: 26870011
Light hydrocarbon gases in Guaymas Basin hydrothermal fluids: Thermogenic versus abiogenic origin
Welhan, Am Assoc Petrol Geol Bull 71(), 1987

Widdel, 1992

Widdel, 2007
Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences.
Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, Whitman WB, Euzeby J, Amann R, Rossello-Mora R., Nat. Rev. Microbiol. 12(9), 2014
PMID: 25118885
Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications.
Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G, Vaughan R, Hunter C, Park J, Morrison N, Rocca-Serra P, Sterk P, Arumugam M, Bailey M, Baumgartner L, Birren BW, Blaser MJ, Bonazzi V, Booth T, Bork P, Bushman FD, Buttigieg PL, Chain PS, Charlson E, Costello EK, Huot-Creasy H, Dawyndt P, DeSantis T, Fierer N, Fuhrman JA, Gallery RE, Gevers D, Gibbs RA, San Gil I, Gonzalez A, Gordon JI, Guralnick R, Hankeln W, Highlander S, Hugenholtz P, Jansson J, Kau AL, Kelley ST, Kennedy J, Knights D, Koren O, Kuczynski J, Kyrpides N, Larsen R, Lauber CL, Legg T, Ley RE, Lozupone CA, Ludwig W, Lyons D, Maguire E, Methe BA, Meyer F, Muegge B, Nakielny S, Nelson KE, Nemergut D, Neufeld JD, Newbold LK, Oliver AE, Pace NR, Palanisamy G, Peplies J, Petrosino J, Proctor L, Pruesse E, Quast C, Raes J, Ratnasingham S, Ravel J, Relman DA, Assunta-Sansone S, Schloss PD, Schriml L, Sinha R, Smith MI, Sodergren E, Spo A, Stombaugh J, Tiedje JM, Ward DV, Weinstock GM, Wendel D, White O, Whiteley A, Wilke A, Wortman JR, Yatsunenko T, Glockner FO., Nat. Biotechnol. 29(5), 2011
PMID: 21552244
PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS., Bioinformatics 26(13), 2010
PMID: 20472543
A greedy algorithm for aligning DNA sequences.
Zhang Z, Schwartz S, Wagner L, Miller W., J. Comput. Biol. 7(1-2), 2000
PMID: 10890397
DNA recovery from soils of diverse composition.
Zhou J, Bruns MA, Tiedje JM., Appl. Environ. Microbiol. 62(2), 1996
PMID: 8593035
Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited.
Zverlov V, Klein M, Lucker S, Friedrich MW, Kellermann J, Stahl DA, Loy A, Wagner M., J. Bacteriol. 187(6), 2005
PMID: 15743970

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 26971539
PubMed | Europe PMC

Suchen in

Google Scholar