On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment
de Angelis T, Federico S, Ferrari G (2014) Center for Mathematical Economics Working Papers; 509.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_509.pdf
558.16 KB
Autor*in
de Angelis, Tiziano;
Federico, Salvatore;
Ferrari, GiorgioUniBi
Abstract / Bemerkung
This paper examines a Markovian model for the optimal irreversible investment
problem of a firm aiming at minimizing total expected costs of production. We model market
uncertainty and the cost of investment per unit of production capacity as two independent
one-dimensional regular diffusions, and we consider a general convex running cost function.
The optimization problem is set as a three-dimensional degenerate singular stochastic control
problem.
We provide the optimal control as the solution of a Skorohod reflection problem at a suitable
free-boundary surface. Such boundary arises from the analysis of a family of two-dimensional
parameter-dependent optimal stopping problems and it is characterized in terms of the family of
unique continuous solutions to parameter-dependent nonlinear integral equations of Fredholm
type.
Stichworte
irreversible investment;
singular stochastic control;
optimal stopping;
freeboundary problems;
nonlinear integral equations
Erscheinungsjahr
2014
Serientitel
Center for Mathematical Economics Working Papers
Band
509
Seite(n)
41
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2901544
Zitieren
de Angelis T, Federico S, Ferrari G. On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment. Center for Mathematical Economics Working Papers. Vol 509. Bielefeld: Center for Mathematical Economics; 2014.
de Angelis, T., Federico, S., & Ferrari, G. (2014). On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment (Center for Mathematical Economics Working Papers, 509). Bielefeld: Center for Mathematical Economics.
de Angelis, Tiziano, Federico, Salvatore, and Ferrari, Giorgio. 2014. On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment. Vol. 509. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
de Angelis, T., Federico, S., and Ferrari, G. (2014). On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment. Center for Mathematical Economics Working Papers, 509, Bielefeld: Center for Mathematical Economics.
de Angelis, T., Federico, S., & Ferrari, G., 2014. On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment, Center for Mathematical Economics Working Papers, no.509, Bielefeld: Center for Mathematical Economics.
T. de Angelis, S. Federico, and G. Ferrari, On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment, Center for Mathematical Economics Working Papers, vol. 509, Bielefeld: Center for Mathematical Economics, 2014.
de Angelis, T., Federico, S., Ferrari, G.: On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment. Center for Mathematical Economics Working Papers, 509. Center for Mathematical Economics, Bielefeld (2014).
de Angelis, Tiziano, Federico, Salvatore, and Ferrari, Giorgio. On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment. Bielefeld: Center for Mathematical Economics, 2014. Center for Mathematical Economics Working Papers. 509.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
IMW_working_paper_509.pdf
558.16 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:36Z
MD5 Prüfsumme
bbc761fb9bd7f349982a449ae47d6703