A non convex singular stochastic control problem and its related optimal stopping boundaries
de Angelis T, Ferrari G, Moriarty J (2014) Center for Mathematical Economics Working Papers; 508.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_508.pdf
458.16 KB
Autor*in
de Angelis, Tiziano;
Ferrari, GiorgioUniBi;
Moriarty, John
Abstract / Bemerkung
We show that the equivalence between certain problems of singular stochastic
control (SSC) and related questions of optimal stopping known for convex performance criteria
(see, for example, Karatzas and Shreve (1984)) continues to hold in a non convex problem
provided a related discretionary stopping time is introduced. Our problem is one of storage
and consumption for electricity, a partially storable commodity with both positive and negative
prices in some markets, and has similarities to the finite fuel monotone follower problem. In
particular we consider a non convex infinite time horizon SSC problem whose state consists of an
uncontrolled diffusion representing a real-valued commodity price, and a controlled increasing
bounded process representing an inventory. We analyse the geometry of the action and inaction
regions by characterising the related optimal stopping boundaries.
Stichworte
finite-fuel singular stochastic control;
optimal stopping;
free-boundary;
smooth- fit;
Hamilton-Jacobi-Bellman equation;
irreversible investment
Erscheinungsjahr
2014
Serientitel
Center for Mathematical Economics Working Papers
Band
508
Seite(n)
25
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2901528
Zitieren
de Angelis T, Ferrari G, Moriarty J. A non convex singular stochastic control problem and its related optimal stopping boundaries. Center for Mathematical Economics Working Papers. Vol 508. Bielefeld: Center for Mathematical Economics; 2014.
de Angelis, T., Ferrari, G., & Moriarty, J. (2014). A non convex singular stochastic control problem and its related optimal stopping boundaries (Center for Mathematical Economics Working Papers, 508). Bielefeld: Center for Mathematical Economics.
de Angelis, Tiziano, Ferrari, Giorgio, and Moriarty, John. 2014. A non convex singular stochastic control problem and its related optimal stopping boundaries. Vol. 508. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
de Angelis, T., Ferrari, G., and Moriarty, J. (2014). A non convex singular stochastic control problem and its related optimal stopping boundaries. Center for Mathematical Economics Working Papers, 508, Bielefeld: Center for Mathematical Economics.
de Angelis, T., Ferrari, G., & Moriarty, J., 2014. A non convex singular stochastic control problem and its related optimal stopping boundaries, Center for Mathematical Economics Working Papers, no.508, Bielefeld: Center for Mathematical Economics.
T. de Angelis, G. Ferrari, and J. Moriarty, A non convex singular stochastic control problem and its related optimal stopping boundaries, Center for Mathematical Economics Working Papers, vol. 508, Bielefeld: Center for Mathematical Economics, 2014.
de Angelis, T., Ferrari, G., Moriarty, J.: A non convex singular stochastic control problem and its related optimal stopping boundaries. Center for Mathematical Economics Working Papers, 508. Center for Mathematical Economics, Bielefeld (2014).
de Angelis, Tiziano, Ferrari, Giorgio, and Moriarty, John. A non convex singular stochastic control problem and its related optimal stopping boundaries. Bielefeld: Center for Mathematical Economics, 2014. Center for Mathematical Economics Working Papers. 508.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
IMW_working_paper_508.pdf
458.16 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-25T06:44:55Z
MD5 Prüfsumme
9f92ffcdf56c673e6fa29914c83876ac
Material in PUB:
Neue Ausgabe
A Nonconvex Singular Stochastic Control Problem and its Related Optimal Stopping Boundaries
De Angelis T, Ferrari G, Moriarty J (2015)
SIAM Journal on Control and Optimization 53(3): 1199-1223.
De Angelis T, Ferrari G, Moriarty J (2015)
SIAM Journal on Control and Optimization 53(3): 1199-1223.