A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments

Kallenbach M, Oh Y, Eilers E, Veit D, Baldwin IT, Schuman MC (2014)
The Plant Journal 78(6): 1060-1072.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Kallenbach, Mario; Oh, Youngjoo; Eilers, ElisabethUniBi; Veit, Daniel; Baldwin, Ian T.; Schuman, Meredith C.
Erscheinungsjahr
2014
Zeitschriftentitel
The Plant Journal
Band
78
Ausgabe
6
Seite(n)
1060-1072
ISSN
0960-7412
Page URI
https://pub.uni-bielefeld.de/record/2901392

Zitieren

Kallenbach M, Oh Y, Eilers E, Veit D, Baldwin IT, Schuman MC. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. The Plant Journal. 2014;78(6):1060-1072.
Kallenbach, M., Oh, Y., Eilers, E., Veit, D., Baldwin, I. T., & Schuman, M. C. (2014). A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. The Plant Journal, 78(6), 1060-1072. doi:10.1111/tpj.12523
Kallenbach, M., Oh, Y., Eilers, E., Veit, D., Baldwin, I. T., and Schuman, M. C. (2014). A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. The Plant Journal 78, 1060-1072.
Kallenbach, M., et al., 2014. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. The Plant Journal, 78(6), p 1060-1072.
M. Kallenbach, et al., “A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments”, The Plant Journal, vol. 78, 2014, pp. 1060-1072.
Kallenbach, M., Oh, Y., Eilers, E., Veit, D., Baldwin, I.T., Schuman, M.C.: A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. The Plant Journal. 78, 1060-1072 (2014).
Kallenbach, Mario, Oh, Youngjoo, Eilers, Elisabeth, Veit, Daniel, Baldwin, Ian T., and Schuman, Meredith C. “A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments”. The Plant Journal 78.6 (2014): 1060-1072.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Specificity of Herbivore Defense Responses in a Woody Plant, Black Poplar (Populus nigra).
Fabisch T, Gershenzon J, Unsicker SB., J Chem Ecol 45(2), 2019
PMID: 30788656
Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore.
Eberl F, Hammerbacher A, Gershenzon J, Unsicker SB., New Phytol 220(3), 2018
PMID: 28418581
Biosynthetic and Functional Color-Scent Associations in Flowers of Papaver nudicaule and Their Impact on Pollinators.
Martínez-Harms J, Warskulat AC, Dudek B, Kunert G, Lorenz S, Hansson BS, Schneider B., Chembiochem (), 2018
PMID: 29696753
Volatile diterpene emission by two Mediterranean Cistaceae shrubs.
Yáñez-Serrano AM, Fasbender L, Kreuzwieser J, Dubbert D, Haberstroh S, Lobo-do-Vale R, Caldeira MC, Werner C., Sci Rep 8(1), 2018
PMID: 29717178
The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature.
Schuman MC, Meldau S, Gaquerel E, Diezel C, McGale E, Greenfield S, Baldwin IT., Front Plant Sci 9(), 2018
PMID: 29963064
Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco.
Li R, Wang M, Wang Y, Schuman MC, Weinhold A, Schäfer M, Jiménez-Alemán GH, Barthel A, Baldwin IT., Proc Natl Acad Sci U S A 114(34), 2017
PMID: 28784761
An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco.
Yi SY, Ku SS, Sim HJ, Kim SK, Park JH, Lyu JI, So EJ, Choi SY, Kim J, Ahn MS, Kim SW, Park H, Jeong WJ, Lim YP, Min SR, Liu JR., Front Plant Sci 8(), 2017
PMID: 29204151
In situ modeling of multimodal floral cues attracting wild pollinators across environments.
Nordström K, Dahlbom J, Pragadheesh VS, Ghosh S, Olsson A, Dyakova O, Suresh SK, Olsson SB., Proc Natl Acad Sci U S A 114(50), 2017
PMID: 29180408
Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.
Yon F, Joo Y, Cortés Llorca L, Rothe E, Baldwin IT, Kim SG., New Phytol 209(3), 2016
PMID: 26439540
Oral secretions from Mythimna separata insects specifically induce defence responses in maize as revealed by high-dimensional biological data.
Qi J, Sun G, Wang L, Zhao C, Hettenhausen C, Schuman MC, Baldwin IT, Li J, Song J, Liu Z, Xu G, Lu X, Wu J., Plant Cell Environ 39(8), 2016
PMID: 26991784
Fortune telling: metabolic markers of plant performance.
Fernandez O, Urrutia M, Bernillon S, Giauffret C, Tardieu F, Le Gouis J, Langlade N, Charcosset A, Moing A, Gibon Y., Metabolomics 12(10), 2016
PMID: 27729832
Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots.
Eilers EJ, Pauls G, Rillig MC, Hansson BS, Hilker M, Reinecke A., J Chem Ecol 41(3), 2015
PMID: 25795090
How scent and nectar influence floral antagonists and mutualists.
Kessler D, Kallenbach M, Diezel C, Rothe E, Murdock M, Baldwin IT., Elife 4(), 2015
PMID: 26132861
Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping.
Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT., Proc Natl Acad Sci U S A 112(36), 2015
PMID: 26305938
Methods in plant foliar volatile organic compounds research.
Materić D, Bruhn D, Turner C, Morgan G, Mason N, Gauci V., Appl Plant Sci 3(12), 2015
PMID: 26697273

55 References

Daten bereitgestellt von Europe PubMed Central.

Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes
Abraham MH., 1993
Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production.
Allmann S, Halitschke R, Schuurink RC, Baldwin IT., Plant Cell Environ. 33(12), 2010
PMID: 20584148
Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition.
Allmann S, Spathe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin IT, Hansson BS., Elife 2(), 2013
PMID: 23682312
Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission.
Arimura G, Kopke S, Kunert M, Volpe V, David A, Brand P, Dabrowska P, Maffei ME, Boland W., Plant Physiol. 146(3), 2007
PMID: 18165324
Sorptive sample preparation -- a review.
Baltussen E, Cramers CA, Sandra PJ., Anal Bioanal Chem 373(1-2), 2002
PMID: 12012168

Bednar AJ, Russell AL, Georgian T, Splichal D, Hayes CA, Tackett P, Jones WT, Justes D, Parker L, Kirgan RA., 2011
The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns
Belardi RG, Pawliszyn J., 1989
Headspace sampling of the volatile fraction of vegetable matrices.
Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P., J Chromatogr A 1184(1-2), 2007
PMID: 17624361
Impact of water/PDMS phase ratio, volume of PDMS, and sampling time on Stir Bar Sorptive Extraction (SBSE) recovery of some pesticides with different KO/W
Bicchi C, Cordero C, Rubiolo P, Sandra P., 2003
Light modulation of volatile organic compounds from petunia flowers and select fruits
Colquhoun TA, Schwieterman ML, Gilbert JL, Jaworski EA, Langer KM, Jones CR, Rushing GV, Hunter TM, Olmstead J, Clark DG, Folta KM., 2013
Chemosensation and belowground host plant finding in Melolontha melolontha L. larvae
Eilers EJ., 2012
Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata.
Halitschke R, Keßler A, Kahl J, Lorenz A, Baldwin IT., Oecologia 124(3), 2000
PMID: 28308780
Online, real-time detection of volatile emissions from plant tissue.
Harren FJ, Cristescu SM., AoB Plants 5(), 2013
PMID: 23429357
Multiple stress factors and the emission of plant VOCs.
Holopainen JK, Gershenzon J., Trends Plant Sci. 15(3), 2010
PMID: 20144557
Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana.
Kegge W, Weldegergis BT, Soler R, Vergeer-Van Eijk M, Dicke M, Voesenek LA, Pierik R., New Phytol. 200(3), 2013
PMID: 23845065
Defensive function of herbivore-induced plant volatile emissions in nature.
Kessler A, Baldwin IT., Science 291(5511), 2001
PMID: 11251117
Changing pollinators as a means of escaping herbivores.
Kessler D, Diezel C, Baldwin IT., Curr. Biol. 20(3), 2010
PMID: 20096581
Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends.
Kessler D, Diezel C, Clark DG, Colquhoun TA, Baldwin IT., Ecol. Lett. 16(3), 2012
PMID: 23173705
A natural history driven, plant mediated RNAi based study reveals CYP6B46’s role in a nicotine-mediated anti-predator herbivore defense
Kumar P, Pandit S, Steppuhn A, Baldwin IT., 2013
Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis.
Kusano M, Iizuka Y, Kobayashi M, Fukushima A, Saito K., Metabolites 3(2), 2013
PMID: 24957989
Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices.
Lee JN, Park C, Whitesides GM., Anal. Chem. 75(23), 2003
PMID: 14640726
Dynamics of organic compound extraction from water using liquid-coated fused silica fibers
Louch D, Motlagh S, Pawliszyn J., 1992
Effect of diurnal sampling on the headspace composition of detached Nicotiana suaveolens flowers
Loughrin JH, Hamilton-Kemp TR, Burton HR, Andersen RA., 1993
The specificity of herbivore-induced plant volatiles in attracting herbivore enemies.
Clavijo McCormick A, Unsicker SB, Gershenzon J., Trends Plant Sci. 17(5), 2012
PMID: 22503606
Volatile metabolite profiling to detect and discriminate stem-end rot and anthracnose diseases of mango fruits
Moalemiyan M, Vikram A, Kushalappa AC, Yaylayan V., Plant Pathol. 55(6), 2006
PMID: IND43851053
A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (Technical Report)
Mocak J, Bond AM, Mitchell S, Scollary G., 1997
Trace Analysis
Müller H, Zwanziger HW, Flachowsky J., 2005
Time-weighted average water sampling in Lake Ontario with solid-phase microextraction passive samplers.
Ouyang G, Zhao W, Bragg L, Qin Z, Alaee M, Pawliszyn J., Environ. Sci. Technol. 41(11), 2007
PMID: 17612185
Solid-phase microextraction
Pawliszyn J., 1997
Silicone rod and silicone tube sorptive extraction.
van Pinxteren M, Paschke A, Popp P., J Chromatogr A 1217(16), 2009
PMID: 19954783

AUTHOR UNKNOWN, 2013
Early steps in isoprenoid biosynthesis, multilevel regulation of the supply of common precursors in plant cells
Rodríguez-Concepción M., 2006
Applications of polydimethylsiloxane in analytical chemistry: a review.
Seethapathy S, Gorecki T., Anal. Chim. Acta 750(), 2012
PMID: 23062428
Concepts and preliminary observations on the triple-dimensional analysis of complex volatile samples by using GC×GC-TOFMS
Shellie R, Marriott P, Morrison P., 2001
Plant defense elicitors: analogues of jasmonoyl-isoleucine conjugate.
Svoboda J, Boland W., Phytochemistry 71(13), 2010
PMID: 20570297
Practical approaches to plant volatile analysis.
Tholl D, Boland W, Hansel A, Loreto F, Rose US, Schnitzler JP., Plant J. 45(4), 2006
PMID: 16441348
Biomimetic measurement of allelochemical dynamics in the rhizosphere.
Weidenhamer JD., J. Chem. Ecol. 31(2), 2005
PMID: 15856780
MetaboAnalyst: a web server for metabolomic data analysis and interpretation.
Xia J, Psychogios N, Young N, Wishart DS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19429898
Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: A review.
Zhu F, Xu J, Ke Y, Huang S, Zeng F, Luan T, Ouyang G., Anal. Chim. Acta 794(), 2013
PMID: 23972969

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24684685
PubMed | Europe PMC

Suchen in

Google Scholar