Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae

Eilers E, Talarico G, Hansson BS, Hilker M, Reinecke A (2012)
PLoS ONE 7(7): e41357.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Eilers, ElisabethUniBi; Talarico, Giovanni; Hansson, Bill S.; Hilker, Monika; Reinecke, Andreas
Abstract / Bemerkung
Introduction Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures. Results Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds. Conclusions Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function.
Erscheinungsjahr
2012
Zeitschriftentitel
PLoS ONE
Band
7
Ausgabe
7
Art.-Nr.
e41357
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2901388

Zitieren

Eilers E, Talarico G, Hansson BS, Hilker M, Reinecke A. Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS ONE. 2012;7(7): e41357.
Eilers, E., Talarico, G., Hansson, B. S., Hilker, M., & Reinecke, A. (2012). Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS ONE, 7(7), e41357. doi:10.1371/journal.pone.0041357
Eilers, Elisabeth, Talarico, Giovanni, Hansson, Bill S., Hilker, Monika, and Reinecke, Andreas. 2012. “Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae”. PLoS ONE 7 (7): e41357.
Eilers, E., Talarico, G., Hansson, B. S., Hilker, M., and Reinecke, A. (2012). Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS ONE 7:e41357.
Eilers, E., et al., 2012. Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS ONE, 7(7): e41357.
E. Eilers, et al., “Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae”, PLoS ONE, vol. 7, 2012, : e41357.
Eilers, E., Talarico, G., Hansson, B.S., Hilker, M., Reinecke, A.: Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS ONE. 7, : e41357 (2012).
Eilers, Elisabeth, Talarico, Giovanni, Hansson, Bill S., Hilker, Monika, and Reinecke, Andreas. “Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae”. PLoS ONE 7.7 (2012): e41357.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ultrastructure of sensilla on the maxillary and labial palps of the adult Xylotrechus grayii (Coleoptera: Cerambycidae).
Chen J, Zhu X, Qiao H, Liu S, Xu C, Xu R, Zhan W, Li J, Guo K, Chen J., Microsc Res Tech 81(6), 2018
PMID: 29624778
Functional sensorial complementation during host orientation in an Asilidae parasitoid larva.
Pueyrredon JM, Crespo JE, Castelo MK., Bull Entomol Res 107(5), 2017
PMID: 28264734
A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin.
Bont Z, Arce C, Huber M, Huang W, Mestrot A, Sturrock CJ, Erb M., J Chem Ecol 43(3), 2017
PMID: 28303526
Characterization of antennal sensilla, larvae morphology and olfactory genes of Melipona scutellaris stingless bee.
Carvalho WJ, Fujimura PT, Bonetti AM, Goulart LR, Cloonan K, da Silva NM, Araújo ECB, Ueira-Vieira C, Leal WS., PLoS One 12(4), 2017
PMID: 28423045
Belowground Ecology of Scarabs Feeding on Grass Roots: Current Knowledge and Future Directions for Management in Australasia.
Frew A, Barnett K, Nielsen UN, Riegler M, Johnson SN., Front Plant Sci 7(), 2016
PMID: 27047506
Ontogeny of mouthpart sensilla of Muga silkworm: a scanning electron microscopic study.
Goldsmith A, Dey S, Kalita J, Choudhury R., Microsc Res Tech 77(2), 2014
PMID: 24446353
Chemically mediated group formation in soil-dwelling larvae and pupae of the beetle Trypoxylus dichotomus.
Kojima W, Ishikawa Y, Takanashi T., Naturwissenschaften 101(9), 2014
PMID: 25027587

76 References

Daten bereitgestellt von Europe PubMed Central.

The roots of defense: plant resistance and tolerance to belowground herbivory.
Watts SM, Dodson CD, Reichman OJ., PLoS ONE 6(4), 2011
PMID: 21494690
Belowground herbivory and plant defenses.
Van NM., 2009
The basal phylogeny of Scarabaeoidea (Insecta: Coleoptera) inferred from larval morphology.
Grebennikov VV, Scholtz CH., 2004
Chemical ecology of phytophagous scarab beetles.
Leal WS., Annu. Rev. Entomol. 43(), 1998
PMID: 15012384
A review of the family-group names for the superfamily Scarabaeoidea (Coleoptera) with corrections to nomenclature and a current classification.
Smith ABT., 2006
An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analyses.
Smith ABT, Hawks DC, Heraty JM., 2006
Sensilla of immature insects.
Zacharuk RY, Shields VD., 1991
Ultrastructure of the antennal sensorial appendage of larvae of Ophonus ardosiacus (Lutshnik, 1922) (Coleoptera, Carabidae) and possible correlations between size and shape and the larval feeding habits.
Giglio A, Brandmayr P, Ferrero EA, Giulianini PG, Perrotta E., 2008
Sensilla on the larval antennae and mouthparts of the European sunflower moth, Homoeosoma Nebulella Den-and-Schiff (Lepidoptera, Pyralidae).
Faucheux MJ., 1995
Die digitiformen Sensillen auf dem Maxillarpalpus von Coleoptera II. Feinstruktur bei Agabus bipustulatus (L.) und Hydrobius fuscipes (L.).
Guse G-W, Honomichl K., 1980
Digitiform sensilla on the maxillar palp of Coleoptera. 3. Fine-Structure in Tenebrio molitor L. and Dermestes maculatus Degeer.
Honomichl K, Guse G-W., 1981
Location of CO-receptive sensilla on larvae of wireworms Agriotes lineatus-obscurus and Limonius californicus.
Doane JF, Klingler J., 1978
Structure and function of antennal pore plate sensilla of Oryctes rhinoceros (L.) (Coleoptera: Dynastidae).
Renou M, Tauban D, Morin JP., 1998
Observations on the morphology and bionomics of Serica brunnea, L., with notes on allied chafer pests.
Jepson WF., 1937
Sensory organs of the antennae and mouthparts of beetle larvae (Coleoptera).
Alekseev MA, Sinitsina EE, Chaika SY., 2006
Ultrastructure and comparative morphology of mouth-part sensilla in ground beetle larvae (Insecta, Coleoptera, Carabidae).
Giglio A, Ferrero EA, Perrotta E, Tripepi S, Brandmayr TZ., 2003
Morphology and ultrastructure of chemosensory sensilla of labio-maxillary complex in the Colorado potato beetle, Leptinotarsa decemlineata (Col.: Chrysomelidae), larvae.
Farazmand H, Chaika SY., 2008
Morphology of the pre-imaginal life stages of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae).
Dosdall LM, McFarlane MA., 2004
Morphology and fine structure of mouthpart sensilla in the dark-sided cutworm Euxoa messoria (Harris) (Lepidoptera, Noctuidae).
Devitt BD, Smith JJB., 1982
Über die Bedeutung des Kohlendioxyds für die Orientierung der Larven von Otiorrhynchus sulcatus F., Melolontha und Agriotes (Col.) im Boden (Vorläufige Mitteilung).
Klingler J., 1957
Abundanz- und Dispersionsdynamik von Melolontha melolontha (L.) in Intensivobstanlagen.
Hasler T., 1986
Attractiveness of CO released by root respiration fades on the background of root exudates.
Reinecke A, Müller F, Hilker M., 2008
The role of root exudates and allelochemicals in the rhizosphere.
Bertin C, Yang XH, Weston LA., 2003
Root exudates as mediators of mineral acquisition in low-nutrient environments.
Dakora FD, Phillips DA., 2002
Gustation of sugars, amino-acids and lipids by larvae of Scarabaeid, Sericesthis geminata (Coleoptera).
Wensler RJ, Dudzinski AE., 1972
Attractive properties of an isoflavonoid found in white clover root nodules on the clover root weevil.
Johnson SN, Gregory PJ, Greenham JR, Zhang X, Murray PJ., J. Chem. Ecol. 31(9), 2005
PMID: 16132224
Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis.
Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM., Plant Physiol. 135(1), 2004
PMID: 15141066
Olfactory response of Costelytra zealandica (Coleoptera: Melolonthinae) to the roots of several pasture plants.
Sutherland ORW, Hillier JR., 1974
Chemical attractants for larvae of Costelytra zealandica (Coleoptera: Scarabaeidae).
Osborne GO, Boyd JF., 1974
A low-viscosity epoxy resin embedding medium for electron microscopy.
Spurr AR., J. Ultrastruct. Res. 26(1), 1969
PMID: 4887011
Cross-adaptation and self-adaptation of electroantennogram responses in the lightbrown apple moth (Epiphyas Postvittana).
Rumbo ER., 1988
R: A Language and Environment for Statistical Computing.
AUTHOR UNKNOWN, 2009
Chemically-mediated host-plant location and selection by root-feeding insects.
Johnson ScottN, Gregory PeterJ., Physiol. Entomol. 31(1), 2006
PMID: IND43783349
Flüchtige Metabolite als Infochemikalien: Duftstoffe im Erdreich.
Kai M, Wenke K, Piechulla B., 2009
Untersuchungen über die Wanderungen des Maikäfer-Engerlings (Melolontha melolontha L. und Melolontha hippocastani F.).
Schwerdtfeger F., 1939
Morphology and development of the peripheral olfactory organs.
Keil TA., 1999
Larva and pupa of Aegidium cribratum Bates (Coleoptera, Scarabaeidae, Orphninae).
Moron MA., 1991
Larvae of six genera of Cetoniinae from Eastern Nigeria (Coleoptera: Scarabaeidae).
Jerath ML, Unny KL., 1965
Strategus syphax (Fabr.): A description of the third instar larva and pupa (Coleoptera: Scarabaeidae: Dynastinae).
Ratcliffe BC, Chalumeau F., 1980
Larval morphology of some Anisopliini grain beetles with a key to their larvae (Coleoptera: Scarabaeoidea: Rutelidae: Anomalinae).
Micó E, Verdú JR, Galante E., 2001
The effect of root volatiles on the orientation behaviour of cockchafer larvae in the soil.
Weissteiner SM., 2010
Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera) Zoomorphologie
Meinecke C-C., 1975
Atlas of olfactory organs of Drosophila melanogaster – 1. Types, external organization, innervation and distribution of olfactory sensilla.
Shanbhag SR, Müller B, Steinbrecht RA., 1999
Electrophysiological identification of antennal pH receptors in the ground beetle Pterostichus oblongopunctatus.
Merivee E, Ploomi A, Milius M, Luik A, Heidemaa M., Physiol. Entomol. 30(2), 2005
PMID: IND43713546
Un-filtered recordings from insect taste sensilla.
Marion-Poll F, Pers Jvander., Entomol. Exp. Appl. 80(1), 1996
PMID: IND20537230
Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases.
Zimmer M, Gray JM, Pokala N, Chang AJ, Karow DS, Marletta MA, Hudson ML, Morton DB, Chronis N, Bargmann CI., Neuron 61(6), 2009
PMID: 19323996
Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases.
Vermehren-Schmaedick A, Ainsley JA, Johnson WA, Davies SA, Morton DB., Genetics 186(1), 2010
PMID: 20592263
Experimentaluntersuchungen über das Verhalten des Maikäferengerlings (Melolontha spec).
Ene I-M., 1942
Ultrastructure and function of Insect thermoreceptors and hygroreceptors.
Altner H, Loftus R., 1985
Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes.
Turner SL, Li N, Guda T, Githure J, Carde RT, Ray A., Nature 474(7349), 2011
PMID: 21637258
Malaria: Mosquitoes bamboozled.
Stopfer M., Nature 474(7349), 2011
PMID: 21637247
Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes.
Turner SL, Li N, Guda T, Githure J, Carde RT, Ray A., Nature 474(7349), 2011
PMID: 21637258
Coding of odors by a receptor repertoire.
Hallem EA, Carlson JR., Cell 125(1), 2006
PMID: 16615896
Carbon-dioxide sensing structures in terrestrial arthropods.
Stange G, Stowe S., Microsc. Res. Tech. 47(6), 1999
PMID: 10607381
Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females.
Ruther J, Reinecke A, Thiemann K, Tolasch T, Francke W, Hilker M., Physiol. Entomol. 25(2), 2000
PMID: IND22082729
Electroantennogram responses of the grain aphids Sitobion avenae (F) and Metopolophium dirhodum (Walk) (Hom, Aphididae) to plant odor components.
Visser JH, Yan FS., 1995
Assessing the attractiveness of volatile plant compounds to western flower thrips Frankliniella occidentalis.
Koschier EH, De WJ, Visser JH., 2000
Olfactory capabilities of gustatory chemoreceptors of tobacco hornworm larvae.
Städler E, Hanson FE., 1975
Peripheral and central structures involved in insect gustation.
Mitchell BK, Itagaki H, Rivet MP., Microsc. Res. Tech. 47(6), 1999
PMID: 10607380
Function and morphology of the antennal lobe: new developments.
Hansson BS, Anton S., Annu. Rev. Entomol. 45(), 2000
PMID: 10761576
Antennal transcriptome of Manduca sexta.
Grosse-Wilde E, Kuebler LS, Bucks S, Vogel H, Wicher D, Hansson BS., Proc. Natl. Acad. Sci. U.S.A. 108(18), 2011
PMID: 21498690
Finestructure of the dorsal organ of the house fly larva, Musca domestica L. Zeitschrift für Zellforschung und mikroskopische Anatomie
Chu I-W, Axtell RC., 1971
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22848471
PubMed | Europe PMC

Suchen in

Google Scholar