Hybrid molecular and spin dynamics simulations for ensembles of magnetic nanoparticles for magnetoresistive systems

Teich L, Schröder C (2015)
Sensors 15(11): 28826-28841.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
The development of magnetoresistive sensors based on magnetic nanoparticles which are immersed in conductive gel matrices requires detailed information about the corresponding magnetoresistive properties in order to obtain optimal sensor sensitivities. Here, crucial parameters are the particle concentration, the viscosity of the gel matrix and the particle structure. Experimentally, it is not possible to obtain detailed information about the magnetic microstructure, i.e., orientations of the magnetic moments of the particles that define the magnetoresistive properties, however, by using numerical simulations one can study the magnetic microstructure theoretically, although this requires performing classical spin dynamics and molecular dynamics simulations simultaneously. Here, we present such an approach which allows us to calculate the orientation and the trajectory of every single magnetic nanoparticle. This enables us to study not only the static magnetic microstructure, but also the dynamics of the structuring process in the gel matrix itself. With our hybrid approach, arbitrary sensor configurations can be investigated and their magnetoresistive properties can be optimized.
Stichworte
hybrid classical spin dynamics and molecular dynamics simulations
Erscheinungsjahr
2015
Zeitschriftentitel
Sensors
Band
15
Ausgabe
11
Seite(n)
28826-28841
ISSN
1424-8220
Page URI
https://pub.uni-bielefeld.de/record/2901217

Zitieren

Teich L, Schröder C. Hybrid molecular and spin dynamics simulations for ensembles of magnetic nanoparticles for magnetoresistive systems. Sensors. 2015;15(11):28826-28841.
Teich, L., & Schröder, C. (2015). Hybrid molecular and spin dynamics simulations for ensembles of magnetic nanoparticles for magnetoresistive systems. Sensors, 15(11), 28826-28841. doi:10.3390/s151128826
Teich, Lisa, and Schröder, Christian. 2015. “Hybrid molecular and spin dynamics simulations for ensembles of magnetic nanoparticles for magnetoresistive systems”. Sensors 15 (11): 28826-28841.
Teich, L., and Schröder, C. (2015). Hybrid molecular and spin dynamics simulations for ensembles of magnetic nanoparticles for magnetoresistive systems. Sensors 15, 28826-28841.
Teich, L., & Schröder, C., 2015. Hybrid molecular and spin dynamics simulations for ensembles of magnetic nanoparticles for magnetoresistive systems. Sensors, 15(11), p 28826-28841.
L. Teich and C. Schröder, “Hybrid molecular and spin dynamics simulations for ensembles of magnetic nanoparticles for magnetoresistive systems”, Sensors, vol. 15, 2015, pp. 28826-28841.
Teich, L., Schröder, C.: Hybrid molecular and spin dynamics simulations for ensembles of magnetic nanoparticles for magnetoresistive systems. Sensors. 15, 28826-28841 (2015).
Teich, Lisa, and Schröder, Christian. “Hybrid molecular and spin dynamics simulations for ensembles of magnetic nanoparticles for magnetoresistive systems”. Sensors 15.11 (2015): 28826-28841.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

31 References

Daten bereitgestellt von Europe PubMed Central.

Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange.
Binasch G, Grunberg P, Saurenbach F, Zinn W., Phys. Rev., B Condens. Matter 39(7), 1989
PMID: 9948867
Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices.
Baibich MN, Broto JM, Fert A, Nguyen Van Dau F , Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J., Phys. Rev. Lett. 61(21), 1988
PMID: 10039127
Giant magnetoresistance in nonmultilayer magnetic systems.
Xiao JQ, Jiang JS, Chien CL., Phys. Rev. Lett. 68(25), 1992
PMID: 10045787
Giant magnetoresistance in heterogeneous Cu-Co alloys.
Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE, Parker FT, Hutten A, Thomas G., Phys. Rev. Lett. 68(25), 1992
PMID: 10045786
Giant magnetoresistance effects in gel-like matrices
Meyer J., Rempel T., Schäfers M., Wittbracht F., Müller C., Patel A.V., Hütten A.., 2013
Modeling of nanoparticular magnetoresistive systems and the impact on molecular recognition.
Teich L, Kappe D, Rempel T, Meyer J, Schroder C, Hutten A., Sensors (Basel) 15(4), 2015
PMID: 25903554
Giant magnetoresistance effects in gel-like matrices: Comparing experimental and theoretical data
Rempel T., Meyer J., Teich L., Gottschalk M., Rott K., Kappe D., Schröder C., Hütten A.., 0
Ab initio spin dynamics in magnets.
Antropov VP, Katsnelson MI, van Schilfgaarde M , Harmon BN., Phys. Rev. Lett. 75(4), 1995
PMID: 10060099
Spin dynamics in magnets: Equation of motion and finite temperature effects.
Antropov VP, Katsnelson MI, Harmon BN, van Schilfgaarde M , Kusnezov D., Phys. Rev., B Condens. Matter 54(2), 1996
PMID: 9985370
Algorithm for molecular dynamics simulations of spin liquids.
Omelyan IP, Mryglod IM, Folk R., Phys. Rev. Lett. 86(5), 2001
PMID: 11177968
Molecular dynamics simulations of spin and pure liquids with preservation of all the conservation laws.
Omelyan IP, Mryglod IM, Folk R., Phys Rev E Stat Nonlin Soft Matter Phys 64(1 Pt 2), 2001
PMID: 11461329
Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems.
Omelyan IP, Mryglod IM, Folk R., Phys Rev E Stat Nonlin Soft Matter Phys 66(2 Pt 2), 2002
PMID: 12241312
Large-scale simulation of the spin lattice dynamics in ferromagnetic iron
Ma P.-W., Woo C.H.., 2008
Thermostatting the atomic spin dynamics from controlled demons
Thibaudeau P., Beaujouan D.., 2012
General purpose molecular dynamics simulations fully implemented on graphics processing units
Anderson J.A., Lorenz C.D., Travesset A.., 2008
Strong scaling of general-purpose molecular dynamics on GPUs
Glaser J., Nguyen T.D., Anderson J.A., Liu P., Spiga F., Millan J.A., Morse D.C., Glotzer S.C.., 2015
HOOMD—Blue Web Page
AUTHOR UNKNOWN, 0

Frenkel D., Smit B.., 2001

Tuckerman M.E.., 2010
Role of repulsive forces in determining he equilibrium structure of simple liquids
Weeks J.D., Chandler D., Andersen H.C.., 1971
Simulating Computationally Complex Magnetic Molecules
Engelhardt L., Schröder C.., 2011

Milstein G.N., Tretyakov M.V.., 2004
Lattice Boltzmann simulations of soft matter systems
Dünweg B., Ladd A.J.C.., 2009
Brownian diffusion of particles with hydrodynamic interaction
Batchelor G.K.., 1976

Rosensweig R.E.., 2014

Thomas S., Kalarikkal N., Stephan A.M., Raneesh B.., 2014
Efficient calculation of low energy configurations of nanoparticle ensembles for magnetoresistive sensor devices by means of stochastic spin dynamics and Monte Carlo methods
Teich L., Schröder C., Müller C., Patel A., Meyer J., Hütten A.., 2015
The "Hot-Solvent/Cold-Solute" Problem Revisited.
Lingenheil M, Denschlag R, Reichold R, Tavan P., J Chem Theory Comput 4(8), 2008
PMID: 26631705
Unified approach for molecular dynamics and density-functional theory.
Car R, Parrinello M., Phys. Rev. Lett. 55(22), 1985
PMID: 10032153

Marx D., Hutter J.., 2009
Phenomenological theory of the giant magnetoresistance of superparamagnetic particles
Wiser N.., 1996
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26580623
PubMed | Europe PMC

Suchen in

Google Scholar