Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency

Mueller J, Gödde V, Niehaus K, Zoerb C (2015)
Frontiers in Plant Science 6: 1014.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mueller, Julia; Gödde, VictoriaUniBi; Niehaus, KarstenUniBi; Zoerb, Christian
Abstract / Bemerkung
White lupin (Lupinus albus L.) is highly adapted to phosphorus diminished soils. P-deficient white lupin plants modify their root architecture and physiology to acquire sparingly available soil phosphorus. We employed gas chromatography mass spectrometry (GC-MS) for metabolic profiling of P-deficient white lupins, to investigate biochemical pathways involved in the P-acquiring strategy. After 14 days of P-deficiency, plants showed reduced levels of fructose, glucose, and sucrose in shoots. Phosphorylated metabolites such as glucose-6-phosphate, fructose-6-phosphate, myo-inositol-phosphate and glycerol-3-phosphate were reduced in both shoots and roots. After 22 days of P-deficiency, no effect on shoot or root sugar metabolite levels was found, but the levels of phosphorylated metabolites were further reduced. Organic acids, amino acids and several shikimate pathway products showed enhanced levels in 22-day-old P-deficient roots and shoots. These results indicate that P-deficient white lupins adapt their carbohydrate partitioning between shoot and root in order to supply their growing root system as an early response to P-deficiency. Organic acids are released into the rhizosphere to mobilize phosphorus from soil particles. A longer period of P-deficiency leads to scavenging of Pi from P-containing metabolites and reduced protein anabolism, but enhanced formation of secondary metabolites. The latter can serve as stress protection molecules or actively acquire phosphorus from the soil.
Stichworte
white lupin
Erscheinungsjahr
2015
Zeitschriftentitel
Frontiers in Plant Science
Band
6
Art.-Nr.
1014
ISSN
1664-462X
Page URI
https://pub.uni-bielefeld.de/record/2901213

Zitieren

Mueller J, Gödde V, Niehaus K, Zoerb C. Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency. Frontiers in Plant Science. 2015;6: 1014.
Mueller, J., Gödde, V., Niehaus, K., & Zoerb, C. (2015). Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency. Frontiers in Plant Science, 6, 1014. doi:10.3389/fpls.2015.01014
Mueller, J., Gödde, V., Niehaus, K., and Zoerb, C. (2015). Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency. Frontiers in Plant Science 6:1014.
Mueller, J., et al., 2015. Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency. Frontiers in Plant Science, 6: 1014.
J. Mueller, et al., “Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency”, Frontiers in Plant Science, vol. 6, 2015, : 1014.
Mueller, J., Gödde, V., Niehaus, K., Zoerb, C.: Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency. Frontiers in Plant Science. 6, : 1014 (2015).
Mueller, Julia, Gödde, Victoria, Niehaus, Karsten, and Zoerb, Christian. “Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency”. Frontiers in Plant Science 6 (2015): 1014.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat.
Wang Y, Lysøe E, Armarego-Marriott T, Erban A, Paruch L, van Eerde A, Bock R, Liu-Clarke J., J Exp Bot 69(15), 2018
PMID: 29757407
Metabolic Changes of Amino Acids and Flavonoids in Tea Plants in Response to Inorganic Phosphate Limitation.
Kc S, Liu M, Zhang Q, Fan K, Shi Y, Ruan J., Int J Mol Sci 19(11), 2018
PMID: 30469347

68 References

Daten bereitgestellt von Europe PubMed Central.

Effect of inorganic phosphate on the biosynthesis of purine and pyrimidine nucleotides in suspension- cultured cells of Catharanthus roseus.
Ashihara H., Li X.-N., Ukaji T.., 1988
Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency.
Byrne SL, Foito A, Hedley PE, Morris JA, Stewart D, Barth S., Ann. Bot. 107(2), 2010
PMID: 21148585
Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants.
Cakmak I., Hengeler C., Marschner H.., 1994
Distribution and function of proteoid roots and other root clusters.
Dinkelaker B., Hengeler C., Marschner H.., 1995
Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.).
Dinkelaker B., Römheld V., Marschner H.., 1989
Metabolite profiling for plant functional genomics.
Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L., Nat. Biotechnol. 18(11), 2000
PMID: 11062433
The alternative respiratory pathway mediates carboxylate synthesis in white lupin cluster roots under phosphorus deprivation.
Florez-Sarasa I, Lambers H, Wang X, Finnegan PM, Ribas-Carbo M., Plant Cell Environ. 37(4), 2013
PMID: 24118034
Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions.
Ganie AH, Ahmad A, Pandey R, Aref IM, Yousuf PY, Ahmad S, Iqbal M., PLoS ONE 10(6), 2015
PMID: 26090681
Die kolorimetrische phosphorsäurebestimmung mit ammonium–vandadat– molybdat und ihre anwendung in der pflanzenanalyse.
Gericke S., Kurmies B.., 1952
World population stabilization unlikely this century.
Gerland P, Raftery AE, Sevcikova H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J., Science 346(6206), 2014
PMID: 25301627
Acid phosphatase activity in phosphorus-deficient white lupin roots.
Gilbert G., Knight J., Vance C., Allan D.., 1999
Plant metabolomics coming of age.
Guy C, Kopka J, Moritz T., Physiol Plant 132(2), 2008
PMID: 18251854
Sugar signaling in root responses to low phosphorus availability.
Hammond JP, White PJ., Plant Physiol. 156(3), 2011
PMID: 21487049
How do plants respond to nutrient shortage by biomass allocation?
Hermans C, Hammond JP, White PJ, Verbruggen N., Trends Plant Sci. 11(12), 2006
PMID: 17092760
Phosphorus stress in common bean: root transcript and metabolic responses.
Hernandez G, Ramirez M, Valdes-Lopez O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP., Plant Physiol. 144(2), 2007
PMID: 17449651
Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.).
Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, Shirley N, Langridge P, Bacic A., Plant Cell Physiol. 49(5), 2008
PMID: 18344526
Mineral nutrition and transport in xylem and phloem of Banksia prionotes (Proteaceae), a tree with dimorphic root morphology.
Jeschke W., Pate J.., 1995
Phosphorus Stress-Induced Proteoid Roots Show Altered Metabolism in Lupinus albus.
Johnson JF, Allan DL, Vance CP., Plant Physiol. 104(2), 1994
PMID: 12232116
Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, Antonio C., Mass Spectrom Rev 35(5), 2015
PMID: 25589422
Alteration of citrate metabolism in cluster roots of white lupin.
Kihara T, Wada T, Suzuki Y, Hara T, Koyama H., Plant Cell Physiol. 44(9), 2003
PMID: 14519771
GMD@CSB.DB: the Golm Metabolome Database.
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D., Bioinformatics 21(8), 2004
PMID: 15613389
Metabolomics - useful tool for study of plant responses to abiotic stresses.
Král’ová K., Jampílek J., Ostrovský I.., 2012
Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency.
Lambers H, Cawthray GR, Giavalisco P, Kuo J, Laliberte E, Pearse SJ, Scheible WR, Stitt M, Teste F, Turner BL., New Phytol. 196(4), 2012
PMID: 22937909
Is there a critical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus
Li Haigang, Shen Jianbo, Zhang Fusuo, Tang Caixian, Lambers Hans., Functional plant biology : FPB. 35(4), 2008
PMID: IND44108443
Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport.
Liu J, Samac DA, Bucciarelli B, Allan DL, Vance CP., Plant J. 41(2), 2005
PMID: 15634202
Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots.
Tian L, Peel GJ, Lei Z, Aziz N, Dai X, He J, Watson B, Zhao PX, Sumner LW, Dixon RA., BMC Plant Biol. 9(), 2009
PMID: 19123941
The pathway of auxin biosynthesis in plants.
Mano Y, Nemoto K., J. Exp. Bot. 63(8), 2012
PMID: 22447967

Marschner H., Marschner P.., 2012
Root‐derived auxin contributes to the phosphorus‐deficiency‐induced cluster‐root formation in white lupin (Lupinus albus)
Meng ZB, You XD, Suo D, Chen YL, Tang C, Yang JL, Zheng SJ., Physiol Plant 148(4), 2013
PMID: IND500678374
Cluster roots--an underground adaptation for survival in extreme environments.
Neumann G, Martinoia E., Trends Plant Sci. 7(4), 2002
PMID: 11950612
Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin.
Neumann G., Massonneau A., Martinoia E., Römheld V.., 1999
Root excretion of carboxylic acids and protons in phosphorus-deficient plants.
Neumann G., Römheld V.., 1999
MeltDB: a software platform for the analysis and integration of metabolomics experiment data.
Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T, Niehaus K, Stoye J, Goesmann A., Bioinformatics 24(23), 2008
PMID: 18765459
The use of metabolomics to dissect plant responses to abiotic stresses.
Obata T, Fernie AR., Cell. Mol. Life Sci. 69(19), 2012
PMID: 22885821
A new class of plant lipid is essential for protection against phosphorus depletion.
Okazaki Y, Otsuki H, Narisawa T, Kobayashi M, Sawai S, Kamide Y, Kusano M, Aoki T, Hirai MY, Saito K., Nat Commun 4(), 2013
PMID: 23443538
Spatial and temporal variation in citrate and malate exudation and tissue concentration as affected by P stress in roots of white lupin.
Penaloza E., Corcuera L., Martinez J.., 2002
The functional organization and control of plant respiration.
Plaxton W., Podestá F.., 2006
Metabolic adaptations of phosphate-starved plants.
Plaxton WC, Tran HT., Plant Physiol. 156(3), 2011
PMID: 21562330
Cluster roots: a curiosity in context.
Shane M., Lambers H.., 2005
Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system.
Shane M., Vos M., de S., Lambers H.., 2003
Metabolomics for plant stress response
Shulaev V, Cortes D, Miller G, Mittler R., Physiol Plant 132(2), 2008
PMID: IND43999346
Anthocyanins in vegetative tissues: a proposed unified function in photoprotection.
Steyn WJ, Wand SJE, Holcroft DM, Jacobs G., New Phytol. 155(3), 2002
PMID: IND23306185
Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions.
Tadano T., Sakai H.., 1991
Attenuation of phosphate starvation responses by phosphite in Arabidopsis.
Ticconi CA, Delatorre CA, Abel S., Plant Physiol. 127(3), 2001
PMID: 11706178
Flavonoids of white lupin roots participate in phosphorus mobilization from soil
Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, Nannipieri P, Torrent J, Martinoia E, Cesco S., Soil Biol. Biochem. 40(7), 2008
PMID: IND44074015
Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism.
Uhde-Stone C., Gilbert G., Johnson J., Litjens R., Zinn K., Temple S.., 2003
Centering, scaling, and transformations: improving the biological information content of metabolomics data.
van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ., BMC Genomics 7(), 2006
PMID: 16762068
Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation.
Varadarajan DK, Karthikeyan AS, Matilda PD, Raghothama KG., Plant Physiol. 129(3), 2002
PMID: 12114577
Opportunities for improving phosphorus-use efficiency in crop plants.
Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA., New Phytol. 195(2), 2012
PMID: 22691045
Hormonal interactions during cluster-root development in phosphate-deficient white lupin (Lupinus albus L.).
Wang Z, Rahman ABMM, Wang G, Ludewig U, Shen J, Neumann G., J. Plant Physiol. 177(), 2014
PMID: 25668414
Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency.
Wasaki J., Yamamura T., Shinano T., Osaki M.., 2003
White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition.
Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E., Plant Cell Environ. 29(5), 2006
PMID: 17087475
Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage.
Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E., New Phytol. 171(3), 2006
PMID: 16866966
Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light
Zeng XQ, Chow WS, Su LJ, Peng XX, Peng CL., Physiol Plant 138(2), 2010
PMID: IND44310578

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26635840
PubMed | Europe PMC

Suchen in

Google Scholar