A compactness theorem for the Seiberg-Witten equation with multiple spinors in dimension three

Haydys A, Walpuski T (2015)
Geometric and Functional Analysis 25(6): 1799-1821.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Haydys, AndriyUniBi; Walpuski, Thomas
Abstract / Bemerkung
We prove that a sequence of solutions of the Seiberg-Witten equation with multiple spinors in dimension three can degenerate only by converging (after rescaling) to a Fueter section of a bundle of moduli spaces of ASD instantons.
Erscheinungsjahr
2015
Zeitschriftentitel
Geometric and Functional Analysis
Band
25
Ausgabe
6
Seite(n)
1799-1821
ISSN
1016-443X
eISSN
1420-8970
Page URI
https://pub.uni-bielefeld.de/record/2901205

Zitieren

Haydys A, Walpuski T. A compactness theorem for the Seiberg-Witten equation with multiple spinors in dimension three. Geometric and Functional Analysis. 2015;25(6):1799-1821.
Haydys, A., & Walpuski, T. (2015). A compactness theorem for the Seiberg-Witten equation with multiple spinors in dimension three. Geometric and Functional Analysis, 25(6), 1799-1821. doi:10.1007/s00039-015-0346-3
Haydys, A., and Walpuski, T. (2015). A compactness theorem for the Seiberg-Witten equation with multiple spinors in dimension three. Geometric and Functional Analysis 25, 1799-1821.
Haydys, A., & Walpuski, T., 2015. A compactness theorem for the Seiberg-Witten equation with multiple spinors in dimension three. Geometric and Functional Analysis, 25(6), p 1799-1821.
A. Haydys and T. Walpuski, “A compactness theorem for the Seiberg-Witten equation with multiple spinors in dimension three”, Geometric and Functional Analysis, vol. 25, 2015, pp. 1799-1821.
Haydys, A., Walpuski, T.: A compactness theorem for the Seiberg-Witten equation with multiple spinors in dimension three. Geometric and Functional Analysis. 25, 1799-1821 (2015).
Haydys, Andriy, and Walpuski, Thomas. “A compactness theorem for the Seiberg-Witten equation with multiple spinors in dimension three”. Geometric and Functional Analysis 25.6 (2015): 1799-1821.