Self-assembly of 33-mer gliadin peptide oligomers

Herrera MG, Benedini LA, Lonez C, Schilardi PL, Hellweg T, Ruysschaert J-M, Dodero VI (2015)
Soft Matter 11(44): 8648-8660.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Herrera, M. G.; Benedini, L. A.; Lonez, C.; Schilardi, P. L.; Hellweg, ThomasUniBi ; Ruysschaert, J-M.; Dodero, V. I.
Abstract / Bemerkung
The 33-mer gliadin peptide, LQLQPF(PQPQLPY)(3)PQPQPF, is a highly immunogenic peptide involved in celiac disease and probably in other immunopathologies associated with gliadin. Herein, dynamic light scattering measurements showed that 33-mer, in the micromolar concentration range, forms polydisperse nano- and micrometer range particles in aqueous media. This behaviour is reminiscent of classical association of colloids and we hypothesized that the 33-mer peptide self-assembles into micelles that could be the precursors of 33-mer oligomers in water. Deposition of 33-mer peptide aqueous solution on bare mica generated nano- and microstructures with different morphologies as revealed by atomic force microscopy. At 6 mu M, the 33-mer is organised in isolated and clusters of spherical nanostructures. In the 60 to 250 mu M concentration range, the spherical oligomers associated mainly in linear and annular arrangements and structures adopting a "sheet'' type morphology appeared. At higher concentrations (610 mu M), mainly filaments and plaques immersed in a background of nanospherical structures were detected. The occurrence of different morphologies of oligomers and finally the filaments suggests that the unique specific geometry of the 33-mer oligomers has a crucial role in the subsequent condensation and organization of their fractal structures into the final filaments. The self-assembly process on mica is described qualitatively and quantitatively by a fractal diffusion limited aggregation (DLA) behaviour with the fractal dimension in the range of 1.62 +/- 0.02 to 1.73 +/- 0.03. Secondary structure evaluation of the oligomers by Attenuated Total Reflection FTIR spectroscopy (ATR-FTIR) revealed the existence of a conformational equilibrium of self-assembled structures, from an extended conformation to a more folded parallel beta elongated structures. Altogether, these findings provide structural and morphological information about supramolecular organization of the 33-mer peptide, which might offer new perspectives for the understanding and treatment of gliadin intolerance disorders.
Erscheinungsjahr
2015
Zeitschriftentitel
Soft Matter
Band
11
Ausgabe
44
Seite(n)
8648-8660
ISSN
1744-683X
eISSN
1744-6848
Page URI
https://pub.uni-bielefeld.de/record/2901046

Zitieren

Herrera MG, Benedini LA, Lonez C, et al. Self-assembly of 33-mer gliadin peptide oligomers. Soft Matter. 2015;11(44):8648-8660.
Herrera, M. G., Benedini, L. A., Lonez, C., Schilardi, P. L., Hellweg, T., Ruysschaert, J. - M., & Dodero, V. I. (2015). Self-assembly of 33-mer gliadin peptide oligomers. Soft Matter, 11(44), 8648-8660. doi:10.1039/c5sm01619c
Herrera, M. G., Benedini, L. A., Lonez, C., Schilardi, P. L., Hellweg, Thomas, Ruysschaert, J-M., and Dodero, V. I. 2015. “Self-assembly of 33-mer gliadin peptide oligomers”. Soft Matter 11 (44): 8648-8660.
Herrera, M. G., Benedini, L. A., Lonez, C., Schilardi, P. L., Hellweg, T., Ruysschaert, J. - M., and Dodero, V. I. (2015). Self-assembly of 33-mer gliadin peptide oligomers. Soft Matter 11, 8648-8660.
Herrera, M.G., et al., 2015. Self-assembly of 33-mer gliadin peptide oligomers. Soft Matter, 11(44), p 8648-8660.
M.G. Herrera, et al., “Self-assembly of 33-mer gliadin peptide oligomers”, Soft Matter, vol. 11, 2015, pp. 8648-8660.
Herrera, M.G., Benedini, L.A., Lonez, C., Schilardi, P.L., Hellweg, T., Ruysschaert, J.-M., Dodero, V.I.: Self-assembly of 33-mer gliadin peptide oligomers. Soft Matter. 11, 8648-8660 (2015).
Herrera, M. G., Benedini, L. A., Lonez, C., Schilardi, P. L., Hellweg, Thomas, Ruysschaert, J-M., and Dodero, V. I. “Self-assembly of 33-mer gliadin peptide oligomers”. Soft Matter 11.44 (2015): 8648-8660.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

p31-43 Gliadin Peptide Forms Oligomers and Induces NLRP3 Inflammasome/Caspase 1- Dependent Mucosal Damage in Small Intestine.
Gómez Castro MF, Miculán E, Herrera MG, Ruera C, Perez F, Prieto ED, Barrera E, Pantano S, Carasi P, Chirdo FG., Front Immunol 10(), 2019
PMID: 30761127
Trehalose Modulates Autophagy Process to Counteract Gliadin Cytotoxicity in an In Vitro Celiac Disease Model.
Manai F, Azzalin A, Morandi M, Riccardi V, Zanoletti L, Dei Giudici M, Gabriele F, Martinelli C, Bozzola M, Comincini S., Cells 8(4), 2019
PMID: 31013754
Translational Chemistry Meets Gluten-Related Disorders.
Lammers KM, Herrera MG, Dodero VI., ChemistryOpen 7(3), 2018
PMID: 29531885

81 References

Daten bereitgestellt von Europe PubMed Central.

Structural basis for gluten intolerance in celiac sprue.
Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C., Science 297(5590), 2002
PMID: 12351792
Spectrum of gluten-related disorders: consensus on new nomenclature and classification.
Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A., BMC Med 10(), 2012
PMID: 22313950
ACG clinical guidelines: diagnosis and management of celiac disease.
Rubio-Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA; American College of Gastroenterology., Am. J. Gastroenterol. 108(5), 2013
PMID: 23609613
The immunology of gluten sensitivity: beyond the gut.
Hadjivassiliou M, Williamson CA, Woodroofe N., Trends Immunol. 25(11), 2004
PMID: 15489185
Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer in coeliac sprue.
Schumann M, Richter JF, Wedell I, Moos V, Zimmermann-Kordmann M, Schneider T, Daum S, Zeitz M, Fromm M, Schulzke JD., Gut 57(6), 2008
PMID: 18305066
Circular dichroism and electron microscopy studies in vitro of 33-mer gliadin peptide revealed secondary structure transition and supramolecular organization.
Herrera MG, Zamarreno F, Costabel M, Ritacco H, Hutten A, Sewald N, Dodero VI., Biopolymers 101(1), 2014
PMID: 23703327

Taboada, 2013
Evidence for a partially folded intermediate in alpha-synuclein fibril formation.
Uversky VN, Li J, Fink AL., J. Biol. Chem. 276(14), 2001
PMID: 11152691
The microglial "activation" continuum: from innate to adaptive responses.
Town T, Nikolic V, Tan J., J Neuroinflammation 2(), 2005
PMID: 16259628
Protein folding and misfolding.
Dobson CM., Nature 426(6968), 2003
PMID: 14685248
Structural changes of poly(butadiene)-poly(ethyleneoxide) diblock-copolymer micelles induced by a cationic surfactant: scattering and cryogenic transmission electron microscopy studies.
Nordskog A, Egger H, Findenegg GH, Hellweg T, Schlaad H, Von Berlepsch H, Bottcher C., Phys Rev E Stat Nonlin Soft Matter Phys 68(1 Pt 1), 2003
PMID: 12935142

Provencher, Comput. Phys. Commun. 27(), 1982
Probing chromatin with the scanning force microscope.
Fritzsche W, Schaper A, Jovin TM., Chromosoma 103(4), 1994
PMID: 7988284
Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy.
Pietrasanta LI, Thrower D, Hsieh W, Rao S, Stemmann O, Lechner J, Carbon J, Hansma H., Proc. Natl. Acad. Sci. U.S.A. 96(7), 1999
PMID: 10097110
NIH Image to ImageJ: 25 years of image analysis.
Schneider CA, Rasband WS, Eliceiri KW., Nat. Methods 9(7), 2012
PMID: 22930834
Evaluation of the information content in infrared spectra for protein secondary structure determination.
Goormaghtigh E, Ruysschaert JM, Raussens V., Biophys. J. 90(8), 2006
PMID: 16428280
Quasielastic light scattering for protein assembly studies.
Lomakin A, Teplow DB, Benedek GB., Methods Mol. Biol. 299(), 2005
PMID: 15980600

Khire, Soft Matter 6(), 2010
Nucleated conformational conversion and the replication of conformational information by a prion determinant.
Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL., Science 289(5483), 2000
PMID: 10958771
Supramolecular assembly of amelogenin nanospheres into birefringent microribbons.
Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J., Science 307(5714), 2005
PMID: 15746422

Teplow, 2006

Hellweg, Colloids Surf., A 163(), 2000
Influence of particle size on diffusion-limited aggregation.
Tan ZJ, Zou XW, Zhang WB, Jin ZZ., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(5 Pt B), 1999
PMID: 11970534
Aggregation and neurotoxicity of mutant amyloid beta (A beta) peptides with proline replacement: importance of turn formation at positions 22 and 23.
Morimoto A, Irie K, Murakami K, Ohigashi H, Shindo M, Nagao M, Shimizu T, Shirasawa T., Biochem. Biophys. Res. Commun. 295(2), 2002
PMID: 12150948
Supramolecular properties of the proline-rich gamma-Zein N-terminal domain.
Kogan MJ, Dalcol I, Gorostiza P, Lopez-Iglesias C, Pons R, Pons M, Sanz F, Giralt E., Biophys. J. 83(2), 2002
PMID: 12124299
Mechanism of cis-inhibition of polyQ fibrillation by polyP: PPII oligomers and the hydrophobic effect.
Darnell GD, Derryberry J, Kurutz JW, Meredith SC., Biophys. J. 97(8), 2009
PMID: 19843462
Glutamine repeats and inherited neurodegenerative diseases: molecular aspects.
Perutz MF., Curr. Opin. Struct. Biol. 6(6), 1996
PMID: 8994886
Glutamine repeats and neurodegenerative diseases: molecular aspects.
Perutz MF., Trends Biochem. Sci. 24(2), 1999
PMID: 10098399
Kinetic theory of fibrillogenesis of amyloid beta-protein.
Lomakin A, Teplow DB, Kirschner DA, Benedek GB., Proc. Natl. Acad. Sci. U.S.A. 94(15), 1997
PMID: 9223292
Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate.
Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB., J. Biol. Chem. 272(35), 1997
PMID: 9268388
Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates.
Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB., J. Biol. Chem. 274(36), 1999
PMID: 10464339
The polydispersity of αB-crystallin is rationalized by an interconverting polyhedral architecture.
Baldwin AJ, Lioe H, Hilton GR, Baker LA, Rubinstein JL, Kay LE, Benesch JL., Structure 19(12), 2011
PMID: 22153508
Visualization of transepithelial passage of the immunogenic 33-residue peptide from alpha-2 gliadin in gluten-sensitive macaques.
Mazumdar K, Alvarez X, Borda JT, Dufour J, Martin E, Bethune MT, Khosla C, Sestak K., PLoS ONE 5(4), 2010
PMID: 20419103
Nanoscale measurements of the assembly of collagen to fibrils.
Yadavalli VK, Svintradze DV, Pidaparti RM., Int. J. Biol. Macromol. 46(4), 2010
PMID: 20206203

Gouyet, 1996

Kurland, Soft Matter 8(), 2012

Tokuyama, Phys. Lett. A 100(), 1984

Choi, Europhys. Lett. 91(), 2010
Modification of hydrophilic and hydrophobic surfaces using an ionic-complementary peptide.
Yang H, Fung SY, Pritzker M, Chen P., PLoS ONE 2(12), 2007
PMID: 18091996

Hayat, 2000
Assembly of A beta amyloid protofibrils: an in vitro model for a possible early event in Alzheimer's disease.
Harper JD, Wong SS, Lieber CM, Lansbury PT Jr., Biochemistry 38(28), 1999
PMID: 10413470

Ding, 1999
Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy.
Schneider SW, Larmer J, Henderson RM, Oberleithner H., Pflugers Arch. 435(3), 1998
PMID: 9426291

Tanford, 1961

Witten, Phys. Rev. B: Condens. Matter Mater. Phys. 27(), 1983

Mandelbrot, 1983

Meakin, Phys. Rev. A: At., Mol., Opt. Phys. 27(), 1983

Meakin, Annu. Rev. Phys. Chem. 39(), 1988
Nonuniversal diffusion-limited aggregation and exact fractal dimensions.
Ossadnik P, Lam CH, Sander LM., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(3), 1994
PMID: 9961503
Hierarchical self-assembly of a coiled-coil peptide into fractal structure.
Lomander A, Hwang W, Zhang S., Nano Lett. 5(7), 2005
PMID: 16178220
Parallel beta-sheet assemblies at interfaces.
Sneer R, Weygand MJ, Kjaer K, Tirrell DA, Rapaport H., Chemphyschem 5(5), 2004
PMID: 15179733
Fractal intermediates in the self-assembly of silicatein filaments.
Murr MM, Morse DE., Proc. Natl. Acad. Sci. U.S.A. 102(33), 2005
PMID: 16091468
Surface-catalyzed amyloid fibril formation.
Zhu M, Souillac PO, Ionescu-Zanetti C, Carter SA, Fink AL., J. Biol. Chem. 277(52), 2002
PMID: 12356747

Martino, J. Mol. Struct. 519(), 2000
Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin.
Tamburro AM, Pepe A, Bochicchio B, Quaglino D, Ronchetti IP., J. Biol. Chem. 280(4), 2004
PMID: 15550396
Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes.
Goormaghtigh E, Raussens V, Ruysschaert JM., Biochim. Biophys. Acta 1422(2), 1999
PMID: 10393271
Infrared spectroscopy of proteins.
Barth A., Biochim. Biophys. Acta 1767(9), 2007
PMID: 17692815
ATR-FTIR: a "rejuvenated" tool to investigate amyloid proteins.
Sarroukh R, Goormaghtigh E, Ruysschaert JM, Raussens V., Biochim. Biophys. Acta 1828(10), 2013
PMID: 23746423
Transition dipole coupling in Amide I modes of betapolypeptides.
Moore WH, Krimm S., Proc. Natl. Acad. Sci. U.S.A. 72(12), 1975
PMID: 16592297
Antiparallel beta-sheet: a signature structure of the oligomeric amyloid beta-peptide.
Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrene YF, Narayanaswami V, Goormaghtigh E, Ruysschaert JM, Raussens V., Biochem. J. 421(3), 2009
PMID: 19435461
Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure.
Celej MS, Sarroukh R, Goormaghtigh E, Fidelio GD, Ruysschaert JM, Raussens V., Biochem. J. 443(3), 2012
PMID: 22316405
Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering.
Sandberg A, Luheshi LM, Sollvander S, Pereira de Barros T, Macao B, Knowles TP, Biverstal H, Lendel C, Ekholm-Petterson F, Dubnovitsky A, Lannfelt L, Dobson CM, Hard T., Proc. Natl. Acad. Sci. U.S.A. 107(35), 2010
PMID: 20713699
A causative link between the structure of aberrant protein oligomers and their toxicity.
Campioni S, Mannini B, Zampagni M, Pensalfini A, Parrini C, Evangelisti E, Relini A, Stefani M, Dobson CM, Cecchi C, Chiti F., Nat. Chem. Biol. 6(2), 2010
PMID: 20081829
Activation of innate immunity by lysozyme fibrils is critically dependent on cross-β sheet structure.
Gustot A, Raussens V, Dehousse M, Dumoulin M, Bryant CE, Ruysschaert JM, Lonez C., Cell. Mol. Life Sci. 70(16), 2013
PMID: 23334185
The use and misuse of FTIR spectroscopy in the determination of protein structure.
Jackson M, Mantsch HH., Crit. Rev. Biochem. Mol. Biol. 30(2), 1995
PMID: 7656562
Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation.
Chen SW, Drakulic S, Deas E, Ouberai M, Aprile FA, Arranz R, Ness S, Roodveldt C, Guilliams T, De-Genst EJ, Klenerman D, Wood NW, Knowles TP, Alfonso C, Rivas G, Abramov AY, Valpuesta JM, Dobson CM, Cremades N., Proc. Natl. Acad. Sci. U.S.A. 112(16), 2015
PMID: 25855634
Molecular structures of amyloid and prion fibrils: consensus versus controversy.
Tycko R, Wickner RB., Acc. Chem. Res. 46(7), 2013
PMID: 23294335

Tuckova, J. Leukocyte Biol. 67(), 2000
Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease.
Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, Picard J, Osman M, Quaratino S, Londei M., Lancet 362(9377), 2003
PMID: 12853196
Effect of prolyl endopeptidase on digestive-resistant gliadin peptides in vivo.
Piper JL, Gray GM, Khosla C., J. Pharmacol. Exp. Ther. 311(1), 2004
PMID: 15143130
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26376290
PubMed | Europe PMC

Suchen in

Google Scholar