Dichotomisation using a distributional approach when the outcome is skewed

Sauzet O, Ofuya M, Peacock JL (2015)
BMC Medical Research Methodology 15(1): 40.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 456.15 KB
Autor*in
Sauzet, OdileUniBi; Ofuya, Mercy; Peacock, Janet L
Abstract / Bemerkung
Background Dichotomisation of continuous outcomes has been rightly criticised by statisticians because of the loss of information incurred. However to communicate a comparison of risks, dichotomised outcomes may be necessary. Peacock et al. developed a distributional approach to the dichotomisation of normally distributed outcomes allowing the presentation of a comparison of proportions with a measure of precision which reflects the comparison of means. Many common health outcomes are skewed so that the distributional method for the dichotomisation of continuous outcomes may not apply. Methods We present a methodology to obtain dichotomised outcomes for skewed variables illustrated with data from several observational studies. We also report the results of a simulation study which tests the robustness of the method to deviation from normality and assess the validity of the newly developed method. Results The review showed that the pattern of dichotomisation was varying between outcomes. Birthweight, Blood pressure and BMI can either be transformed to normal so that normal distributional estimates for a comparison of proportions can be obtained or better, the skew-normal method can be used. For gestational age, no satisfactory transformation is available and only the skew-normal method is reliable. The normal distributional method is reliable also when there are small deviations from normality. Conclusions The distributional method with its applicability for common skewed data allows researchers to provide both continuous and dichotomised estimates without losing information or precision. This will have the effect of providing a practical understanding of the difference in means in terms of proportions.
Stichworte
Dichotomisation Distributional method Birthweight High blood pressure BMI Gestational age
Erscheinungsjahr
2015
Zeitschriftentitel
BMC Medical Research Methodology
Band
15
Ausgabe
1
Art.-Nr.
40
ISSN
1471-2288
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2900858

Zitieren

Sauzet O, Ofuya M, Peacock JL. Dichotomisation using a distributional approach when the outcome is skewed. BMC Medical Research Methodology. 2015;15(1): 40.
Sauzet, O., Ofuya, M., & Peacock, J. L. (2015). Dichotomisation using a distributional approach when the outcome is skewed. BMC Medical Research Methodology, 15(1), 40. doi:10.1186/s12874-015-0028-8
Sauzet, Odile, Ofuya, Mercy, and Peacock, Janet L. 2015. “Dichotomisation using a distributional approach when the outcome is skewed”. BMC Medical Research Methodology 15 (1): 40.
Sauzet, O., Ofuya, M., and Peacock, J. L. (2015). Dichotomisation using a distributional approach when the outcome is skewed. BMC Medical Research Methodology 15:40.
Sauzet, O., Ofuya, M., & Peacock, J.L., 2015. Dichotomisation using a distributional approach when the outcome is skewed. BMC Medical Research Methodology, 15(1): 40.
O. Sauzet, M. Ofuya, and J.L. Peacock, “Dichotomisation using a distributional approach when the outcome is skewed”, BMC Medical Research Methodology, vol. 15, 2015, : 40.
Sauzet, O., Ofuya, M., Peacock, J.L.: Dichotomisation using a distributional approach when the outcome is skewed. BMC Medical Research Methodology. 15, : 40 (2015).
Sauzet, Odile, Ofuya, Mercy, and Peacock, Janet L. “Dichotomisation using a distributional approach when the outcome is skewed”. BMC Medical Research Methodology 15.1 (2015): 40.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:35Z
MD5 Prüfsumme
5e6b4730d2c7b8a9081b23828f1f977d


3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Using marginal standardisation to estimate relative risk without dichotomising continuous outcomes.
Chen Y, Ning Y, Kao SL, Støer NC, Müller-Riemenschneider F, Venkataraman K, Khoo EYH, Tai ES, Tan CS., BMC Med Res Methodol 19(1), 2019
PMID: 31357938
Comparison of Dichotomized and Distributional Approaches in Rare Event Clinical Trial Design: a Fixed Bayesian Design.
Lei Y, Carlson S, Yelland LN, Makrides M, Gibson R, Gajewski BJ., J Appl Stat 44(8), 2017
PMID: 28503016
A distributional approach to obtain adjusted comparisons of proportions of a population at risk.
Sauzet O, Breckenkamp J, Borde T, Brenne S, David M, Razum O, Peacock JL., Emerg Themes Epidemiol 13(), 2016
PMID: 27279891

8 References

Daten bereitgestellt von Europe PubMed Central.

Dichotomising continuous data while retaining statistical power using a distributional approach.
Peacock JL, Sauzet O, Ewings SM, Kerry SM., Stat Med 31(26), 2012
PMID: 22865598
The skew-normal distribution and related multivariate families
Azzalini A., 2005
Ethnic differences in incidence of stroke: prospective study with stroke register.
Stewart JA, Dundas R, Howard RS, Rudd AG, Wolfe CD., BMJ 318(7189), 1999
PMID: 10195965
On the importance--and the unimportance--of birthweight.
Wilcox AJ., Int J Epidemiol 30(6), 2001
PMID: 11821313

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25902850
PubMed | Europe PMC

Suchen in

Google Scholar