Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues

Lewinski M, Hallmann A, Staiger D (2016)
Molecular Genetics and Genomics 291(2): 763-773.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
This study focused on the identification and phylogenetic analysis of glycine-rich RNA binding proteins that contain an RNA recognition motif (RRM)-type RNA binding domain in addition to a region with contiguous glycine residues in representative plant species. In higher plants, glycine-rich proteins with an RRM have met considerable interest as they are responsive to environmental cues and play a role in cold tolerance, pathogen defense, flowering time control, and circadian timekeeping. To identify such RRM containing proteins in plant genomes we developed an RRM profile based on the known glycine-rich RRM containing proteins in the reference plant Arabidopsis thaliana. The application of this remodeled RRM profile that omitted sequences from non-plant species reduced the noise when searching plant genomes for RRM proteins compared to a search performed with the known RRM_1 profile. Furthermore, we developed an island scoring function to identify regions with contiguous glycine residues, using a sliding window approach. This approach tags regions in a protein sequence with a high content of the same amino acid, and repetitive structures score higher. This definition of repetitive structures in a fixed sequence length provided a new glance for characterizing patterns which cannot be easily described as regular expressions. By combining the profile-based domain search for well-conserved regions (the RRM) with a scoring technique for regions with repetitive residues we identified groups of proteins related to the A. thaliana glycine-rich RNA binding proteins in eight plant species.
Stichworte
Glycine-rich domains; HMMER biosequence analysis; MUSCLE alignment; Orthology prediction; Plant; RNA binding protein; RNA recognition motif
Erscheinungsjahr
2016
Zeitschriftentitel
Molecular Genetics and Genomics
Band
291
Ausgabe
2
Seite(n)
763-773
ISSN
1617-4615
eISSN
1617-4623
Page URI
https://pub.uni-bielefeld.de/record/2900648

Zitieren

Lewinski M, Hallmann A, Staiger D. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Molecular Genetics and Genomics. 2016;291(2):763-773.
Lewinski, M., Hallmann, A., & Staiger, D. (2016). Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Molecular Genetics and Genomics, 291(2), 763-773. doi:10.1007/s00438-015-1144-1
Lewinski, Martin, Hallmann, Armin, and Staiger, Dorothee. 2016. “Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues”. Molecular Genetics and Genomics 291 (2): 763-773.
Lewinski, M., Hallmann, A., and Staiger, D. (2016). Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Molecular Genetics and Genomics 291, 763-773.
Lewinski, M., Hallmann, A., & Staiger, D., 2016. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Molecular Genetics and Genomics, 291(2), p 763-773.
M. Lewinski, A. Hallmann, and D. Staiger, “Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues”, Molecular Genetics and Genomics, vol. 291, 2016, pp. 763-773.
Lewinski, M., Hallmann, A., Staiger, D.: Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Molecular Genetics and Genomics. 291, 763-773 (2016).
Lewinski, Martin, Hallmann, Armin, and Staiger, Dorothee. “Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues”. Molecular Genetics and Genomics 291.2 (2016): 763-773.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate.
Foley SW, Gosai SJ, Wang D, Selamoglu N, Sollitti AC, Köster T, Steffen A, Lyons E, Daldal F, Garcia BA, Staiger D, Deal RB, Gregory BD., Dev Cell 41(2), 2017
PMID: 28441533
RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome.
Köster T, Marondedze C, Meyer K, Staiger D., Trends Plant Sci 22(6), 2017
PMID: 28412036

54 References

Daten bereitgestellt von Europe PubMed Central.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Protein database searches using compositionally adjusted substitution matrices.
Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu YK., FEBS J. 272(20), 2005
PMID: 16218944

SN, Gen Mol Biol 28(), 2005
Characterization of wound-responsive RNA-binding proteins and their splice variants in Arabidopsis.
Bove J, Kim CY, Gibson CA, Assmann SM., Plant Mol. Biol. 67(1-2), 2008
PMID: 18278441
Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.
Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW., Cell 149(6), 2012
PMID: 22658674
Differential expression of five Arabidopsis genes encoding glycine-rich proteins.
de Oliveira DE, Seurinck J, Inze D, Van Montagu M, Botterman J., Plant Cell 2(5), 1990
PMID: 2152168
PlantGDB: a resource for comparative plant genomics.
Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson MD, Lawrence CJ, Lushbough C, Brendel V., Nucleic Acids Res. 36(Database issue), 2007
PMID: 18063570
HMMER web server: interactive sequence similarity searching.
Finn RD, Clements J, Eddy SR., Nucleic Acids Res. 39(Web Server issue), 2011
PMID: 21593126
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Quantitative analysis of single-molecule RNA-protein interaction.
Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R., Biophys. J. 96(12), 2009
PMID: 19527663
Phytozome: a comparative platform for green plant genomics.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22110026
Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus.
Gosai SJ, Foley SW, Wang D, Silverman IM, Selamoglu N, Nelson AD, Beilstein MA, Daldal F, Deal RB, Gregory BD., Mol. Cell 57(2), 2014
PMID: 25557549
The genome portal of the Department of Energy Joint Genome Institute.
Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22110030
Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Hackmann C, Korneli C, Kutyniok M, Koster T, Wiedenlubbert M, Muller C, Staiger D., Plant Cell Environ. 37(3), 2013
PMID: 23961939
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity.
Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D, Alfano JR, Xu Y., J. Biol. Chem. 286(50), 2011
PMID: 22013065
Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data.
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T., Rice (N Y) 6(1), 2013
PMID: 24280374
Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function.
Khan F, Daniels MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H., Nucleic Acids Res. 42(13), 2014
PMID: 24957607
Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli.
Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H., Nucleic Acids Res. 35(2), 2006
PMID: 17169986
UBA1 and UBA2, two proteins that interact with UBP1, a multifunctional effector of pre-mRNA maturation in plants.
Lambermon MH, Fu Y, Wieczorek Kirk DA, Dupasquier M, Filipowicz W, Lorkovic ZJ., Mol. Cell. Biol. 22(12), 2002
PMID: 12024044
The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools.
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22140109
Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy.
Leder V, Lummer M, Tegeler K, Humpert F, Lewinski M, Schuttpelz M, Staiger D., Biochem. Biophys. Res. Commun. 453(1), 2014
PMID: 25251471
RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)+ RNA in nuclei of plant cells.
Lorkovic ZJ, Wieczorek Kirk DA, Klahre U, Hemmings-Mieszczak M, Filipowicz W., RNA 6(11), 2000
PMID: 11105760
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
Lummer M, Humpert F, Steuwe C, Caesar K, Schuttpelz M, Sauer M, Staiger D., Traffic 12(6), 2011
PMID: 21453442
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlubbert M, Sauer M, Schuttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876
Functional diversity of the plant glycine-rich proteins superfamily.
Mangeon A, Junqueira RM, Sachetto-Martins G., Plant Signal Behav 5(2), 2010
PMID: 20009520

MA, Front Plant Sci 5(), 2015
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol. Biol. Rep. 37(2), 2009
PMID: 19672695
Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy.
Schuttpelz M, Schoning JC, Doose S, Neuweiler H, Peters E, Staiger D, Sauer M., J. Am. Chem. Soc. 130(29), 2008
PMID: 18576621
A nuclear localization domain in the hnRNP A1 protein.
Siomi H, Dreyfuss G., J. Cell Biol. 129(3), 1995
PMID: 7730395
Transportin-mediated nuclear import of heterogeneous nuclear RNP proteins.
Siomi MC, Eder PS, Kataoka N, Wan L, Liu Q, Dreyfuss G., J. Cell Biol. 138(6), 1997
PMID: 9298975
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs.
Tillich M, Hardel SL, Kupsch C, Armbruster U, Delannoy E, Gualberto JM, Lehwark P, Leister D, Small ID, Schmitz-Linneweber C., Proc. Natl. Acad. Sci. U.S.A. 106(14), 2009
PMID: 19297624
A family of RRM-type RNA-binding proteins specific to plant mitochondria.
Vermel M, Guermann B, Delage L, Grienenberger JM, Marechal-Drouard L, Gualberto JM., Proc. Natl. Acad. Sci. U.S.A. 99(9), 2002
PMID: 11972043
Jalview Version 2--a multiple sequence alignment editor and analysis workbench.
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ., Bioinformatics 25(9), 2009
PMID: 19151095
Genome-wide identification, evolution, and expression analysis of RNA-binding glycine-rich protein family in maize.
Zhang J, Zhao Y, Xiao H, Zheng Y, Yue B., J Integr Plant Biol 56(10), 2014
PMID: 24783971
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7.
Ziemienowicz A, Haasen D, Staiger D, Merkle T., Plant Mol. Biol. 53(1-2), 2003
PMID: 14756317
Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions.
Zimmer AD, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M, Van de Peer Y, Rensing SA, Reski R., BMC Genomics 14(), 2013
PMID: 23879659
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26589419
PubMed | Europe PMC

Suchen in

Google Scholar