Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6.

Ishihara H, Tohge T, Viehöver P, Fernie AR, Weisshaar B, Stracke R (2016)
Journal of Experimental Botany 67(5): 1505-1517.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Ishihara, Hirofumi; Tohge, Takayuki; Viehöver, PriscaUniBi; Fernie, Alisdair R.; Weisshaar, BerndUniBi ; Stracke, RalfUniBi
Erscheinungsjahr
2016
Zeitschriftentitel
Journal of Experimental Botany
Band
67
Ausgabe
5
Seite(n)
1505-1517
ISSN
0022-0957
eISSN
1460-2431
Page URI
https://pub.uni-bielefeld.de/record/2900211

Zitieren

Ishihara H, Tohge T, Viehöver P, Fernie AR, Weisshaar B, Stracke R. Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6. Journal of Experimental Botany. 2016;67(5):1505-1517.
Ishihara, H., Tohge, T., Viehöver, P., Fernie, A. R., Weisshaar, B., & Stracke, R. (2016). Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6. Journal of Experimental Botany, 67(5), 1505-1517. doi:10.1093/jxb/erv546
Ishihara, H., Tohge, T., Viehöver, P., Fernie, A. R., Weisshaar, B., and Stracke, R. (2016). Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6. Journal of Experimental Botany 67, 1505-1517.
Ishihara, H., et al., 2016. Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6. Journal of Experimental Botany, 67(5), p 1505-1517.
H. Ishihara, et al., “Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6.”, Journal of Experimental Botany, vol. 67, 2016, pp. 1505-1517.
Ishihara, H., Tohge, T., Viehöver, P., Fernie, A.R., Weisshaar, B., Stracke, R.: Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6. Journal of Experimental Botany. 67, 1505-1517 (2016).
Ishihara, Hirofumi, Tohge, Takayuki, Viehöver, Prisca, Fernie, Alisdair R., Weisshaar, Bernd, and Stracke, Ralf. “Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6.”. Journal of Experimental Botany 67.5 (2016): 1505-1517.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The natural variance of the Arabidopsis floral secondary metabolites.
Tohge T, Borghi M, Fernie AR., Sci Data 5(), 2018
PMID: 29611844
Insights into Tissue-specific Specialized Metabolism in Tieguanyin Tea Cultivar by Untargeted Metabolomics.
Chen S, Lin J, Liu H, Gong Z, Wang X, Li M, Aharoni A, Yang Z, Yu X., Molecules 23(7), 2018
PMID: 30037120
Ultrahigh resolution metabolomics for S-containing metabolites.
Nakabayashi R, Saito K., Curr Opin Biotechnol 43(), 2017
PMID: 27459328
Integrated genomics-based mapping reveals the genetics underlying maize flavonoid biosynthesis.
Jin M, Zhang X, Zhao M, Deng M, Du Y, Zhou Y, Wang S, Tohge T, Fernie AR, Willmitzer L, Brotman Y, Yan J, Wen W., BMC Plant Biol 17(1), 2017
PMID: 28100172
An Apoplastic β-Glucosidase is Essential for the Degradation of Flavonol 3-O-β-Glucoside-7-O-α-Rhamnosides in Arabidopsis.
Roepke J, Gordon HOW, Neil KJA, Gidda S, Mullen RT, Freixas Coutin JA, Bray-Stone D, Bozzo GG., Plant Cell Physiol 58(6), 2017
PMID: 28419331
Current understanding of the pathways of flavonoid biosynthesis in model and crop plants.
Tohge T, de Souza LP, Fernie AR., J Exp Bot 68(15), 2017
PMID: 28922752
The Genetics of Plant Metabolism.
Fernie AR, Tohge T., Annu Rev Genet 51(), 2017
PMID: 28876980
Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance.
Peng M, Shahzad R, Gul A, Subthain H, Shen S, Lei L, Zheng Z, Zhou J, Lu D, Wang S, Nishawy E, Liu X, Tohge T, Fernie AR, Luo J., Nat Commun 8(1), 2017
PMID: 29213047
Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants.
Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G., Front Plant Sci 7(), 2016
PMID: 27303427
Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae.
Tohge T, Wendenburg R, Ishihara H, Nakabayashi R, Watanabe M, Sulpice R, Hoefgen R, Takayama H, Saito K, Stitt M, Fernie AR., Nat Commun 7(), 2016
PMID: 27545969
Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana.
Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK., Sci Rep 6(), 2016
PMID: 27658445
A De Novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny.
Pucker B, Holtgräwe D, Rosleff Sörensen T, Stracke R, Viehöver P, Weisshaar B., PLoS One 11(10), 2016
PMID: 27711162

68 References

Daten bereitgestellt von Europe PubMed Central.

The anthocyanins
Andersen ØM, Jordheim M., 2006
Expression of chalcone synthase and chalcone isomerase proteins in Arabidopsis seedlings.
Cain CC, Saslowsky DE, Walker RA, Shirley BW., Plant Mol. Biol. 35(3), 1997
PMID: 9349261
A plant-transformation-competent BIBAC library from the Arabidopsis thaliana Landsberg ecotype for functional and comparative genomics.
Chang YL, Henriquez X, Preuss D, Copenhaver GP, Zhang HB., Theor. Appl. Genet. 106(2), 2002
PMID: 12582852
A gateway cloning vector set for high-throughput functional analysis of genes in planta.
Curtis MD, Grossniklaus U., Plant Physiol. 133(2), 2003
PMID: 14555774
Multiple reference genomes and transcriptomes for Arabidopsis thaliana.
Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss SJ, Osborne EJ, Sreedharan VT, Kahles A, Bohnert R, Jean G, Derwent P, Kersey P, Belfield EJ, Harberd NP, Kemen E, Toomajian C, Kover PX, Clark RM, Ratsch G, Mott R., Nature 477(7365), 2011
PMID: 21874022
Structure and molecular stacking of anthocyanins - flower color variation
Goto T, Kondo T., 1991
Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum).
Gronquist M, Bezzerides A, Attygalle A, Meinwald J, Eisner M, Eisner T., Proc. Natl. Acad. Sci. U.S.A. 98(24), 2001
PMID: 11707571
Light induces phenylpropanoid metabolism in Arabidopsis roots.
Hemm MR, Rider SD, Ogas J, Murry DJ, Chapple C., Plant J. 38(5), 2004
PMID: 15144378
UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana.
Jones P, Messner B, Nakajima J, Schaffner AR, Saito K., J. Biol. Chem. 278(45), 2003
PMID: 12900416
The genetics of plant metabolism.
Keurentjes JJ, Fu J, de Vos CH, Lommen A, Hall RD, Bino RJ, van der Plas LH, Jansen RC, Vreugdenhil D, Koornneef M., Nat. Genet. 38(7), 2006
PMID: 16751770
MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.
Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA, Newburg L., Genomics 1(2), 1987
PMID: 3692487
Mapmarker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations
Lander ES, Green P, Abrahamson J, Barlow A, Day MJ, Lincoln SE, Newberg L., 1993
Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana
Lister C, Dean C., 1993
Functional and structural characterization of a flavonoid glucoside 1,6-glucosyltransferase from Catharanthus roseus.
Masada S, Terasaka K, Oguchi Y, Okazaki S, Mizushima T, Mizukami H., Plant Cell Physiol. 50(8), 2009
PMID: 19561332
A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium.
Matsuba Y, Sasaki N, Tera M, Okamura M, Abe Y, Okamoto E, Nakamura H, Funabashi H, Takatsu M, Saito M, Matsuoka H, Nagasawa K, Ozeki Y., Plant Cell 22(10), 2010
PMID: 20971893
The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis.
Mehrtens F, Kranz H, Bednarek P, Weisshaar B., Plant Physiol. 138(2), 2005
PMID: 15923334
Identification of genes in Arabidopsis thaliana with homology to a novel acyl-glucose dependent glucosyltransferase of carnations
Miyahara T, Matsuba Y, Ozeki Y, Sasaki N., 2011
Acyl-glucose-dependent glucosyltransferase catalyzes the final step of anthocyanin formation in Arabidopsis.
Miyahara T, Sakiyama R, Ozeki Y, Sasaki N., J. Plant Physiol. 170(6), 2013
PMID: 23298714
Isolation of an acyl-glucose-dependent anthocyanin 7-O-glucosyltransferase from the monocot Agapanthus africanus.
Miyahara T, Takahashi M, Ozeki Y, Sasaki N., J. Plant Physiol. 169(13), 2012
PMID: 22673029
Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen.
Mo Y, Nagel C, Taylor LP., Proc. Natl. Acad. Sci. U.S.A. 89(15), 1992
PMID: 11607312
Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana.
Nakabayashi R, Kusano M, Kobayashi M, Tohge T, Yonekura-Sakakibara K, Kogure N, Yamazaki M, Kitajima M, Saito K, Takayama H., Phytochemistry 70(8), 2009
PMID: 19497599
Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana.
Nakabayashi R, Mori T, Saito K., Plant Signal Behav 9(8), 2014
PMID: 25763629
Chelate von Diarylborsäuren mit aliphatischen Oxyalkylaminen als Reagenzien für den Nachweis von Oxyphenyl-benzo-γ-pyronen
Neu R., 1957
Antisense flavonol synthase alters copigmentation and flower color in lisianthus
Nielsen K, Deroles SC, Markham KR, Bradley MJ, Podivinsky E, Manson D., 2002
ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis.
Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H., Nucleic Acids Res. 35(Database issue), 2006
PMID: 17130150
Differential flavonoid response to enhanced UV-B radiation in Brassica napus
Olsson LC, Veit M, Weissenböck G, Bornman JF., 1998
Short-term UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient Arabidopsis mutants
Ormrod DP, Landry LG, Conklin PL., 1995
Seven things we think we know about auxin transport.
Peer WA, Blakeslee JJ, Yang H, Murphy AS., Mol Plant 4(3), 2011
PMID: 21505044
Flavonols: old compounds for old roles.
Pollastri S, Tattini M., Ann. Bot. 108(7), 2011
PMID: 21880658
Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis.
Routaboul JM, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, Lepiniec L., J. Exp. Bot. 63(10), 2012
PMID: 22442426
The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity.
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR., Plant Physiol. Biochem. 72(), 2013
PMID: 23473981
Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana.
Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B., Genome Res. 13(6A), 2003
PMID: 12799357
GWAPP: a web application for genome-wide association mapping in Arabidopsis.
Seren U, Vilhjalmsson BJ, Horton MW, Meng D, Forai P, Huang YS, Long Q, Segura V, Nordborg M., Plant Cell 24(12), 2012
PMID: 23277364
Tautomerism of flavonol glucosides: relevance to plant UV protection and flower colour
Smith GJ, Markham KR., 1998
Significance of skin flavonoids for UV-B-protection in apple fruits.
Solovchenko A, Schmitz-Eiberger M., J. Exp. Bot. 54(389), 2003
PMID: 12815032
Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS
Stobiecki M, Skirycz A, Kerhoas L, Kachlicki P, Muth D, Einhorn J, Mueller-Roeber B., 2006
Vacuolar localization of the enzymatic synthesis of hydroxycinnamic acid esters of malic acid in protoplasts from Raphanus sativus leaves
Strack D, Sharma V., 1985
Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase.
Stracke R, De Vos RC, Bartelniewoehner L, Ishihara H, Sagasser M, Martens S, Weisshaar B., Planta 229(2), 2008
PMID: 18998159
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
PlantLoc: an accurate web server for predicting plant protein subcellular localization by substantiality motif.
Tang S, Li T, Cong P, Xiong W, Wang Z, Sun J., Nucleic Acids Res. 41(Web Server issue), 2013
PMID: 23729470
Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor.
Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K., Plant J. 42(2), 2005
PMID: 15807784
Phytochemical genomics in Arabidopsis thaliana: a case study for functional identification of flavonoid biosynthesis genes
Tohge T, Yonekura-Sakakibara K, Niida R, Watanabe-Takahashi A, Saito K., 2007
Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis.
Torjek O, Berger D, Meyer RC, Mussig C, Schmid KJ, Rosleff Sorensen T, Weisshaar B, Mitchell-Olds T, Altmann T., Plant J. 36(1), 2003
PMID: 12974817
Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus.
Trapero A, Ahrazem O, Rubio-Moraga A, Jimeno ML, Gomez MD, Gomez-Gomez L., Plant Physiol. 159(4), 2012
PMID: 22649274
Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility.
van der Meer IM, Stam ME, van Tunen AJ, Mol JN, Stuitje AR., Plant Cell 4(3), 1992
PMID: 1498595
Major flavonoids from Arabidopsis thaliana leaves.
Veit M, Pauli GF., J. Nat. Prod. 62(9), 1999
PMID: 10514319

Wagner H, Bladt S., 1995
Biosynthesis of flavonoids and effects of stress.
Winkel-Shirley B., Curr. Opin. Plant Biol. 5(3), 2002
PMID: 11960739
Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1.
Xu Z, Escamilla-Trevino L, Zeng L, Lalgondar M, Bevan D, Winkel B, Mohamed A, Cheng CL, Shih MC, Poulton J, Esen A., Plant Mol. Biol. 55(3), 2004
PMID: 15604686
Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots.
Yin R, Han K, Heller W, Albert A, Dobrev PI, Zazimalova E, Schaffner AR., New Phytol. 201(2), 2013
PMID: 24251900
Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana.
Yonekura-Sakakibara K, Fukushima A, Nakabayashi R, Hanada K, Matsuda F, Sugawara S, Inoue E, Kuromori T, Ito T, Shinozaki K, Wangwattana B, Yamazaki M, Saito K., Plant J. 69(1), 2011
PMID: 21899608
An evolutionary view of functional diversity in family 1 glycosyltransferases.
Yonekura-Sakakibara K, Hanada K., Plant J. 66(1), 2011
PMID: 21443631
A flavonoid 3-O-glucoside:2"-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana.
Yonekura-Sakakibara K, Nakabayashi R, Sugawara S, Tohge T, Ito T, Koyanagi M, Kitajima M, Takayama H, Saito K., Plant J. 79(5), 2014
PMID: 24916675
Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis.
Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K., Plant Cell 20(8), 2008
PMID: 18757557

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26717955
PubMed | Europe PMC

Suchen in

Google Scholar