Metabolic Engineering Corynebacterium glutamicum to Produce Triacylglycerols.
Plassmeier J, Li Y, Rückert C, Sinskey AJ (2016)
Metab Eng 33: 86-97.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
In this study, we metabolically engineered Corynebacterium glutamicum to produce triacylglycerols (TAGs) by completing and constraining a de novo TAG biosynthesis pathway. First, the plasmid pZ8_TAG4 was constructed which allows the heterologous expression of four genes: three (atf1 and atf2, encoding the diacylglycerol acyltransferase; pgpB, encoding the phosphatidic acid phosphatase) to complete the TAG biosynthesis pathway, and one gene (tadA) for lipid body assembly. Second, we applied four metabolic strategies to increase TAGs accumulation: (i) boosting precursor supply by heterologous expression of tesA (encoding thioesterase to form free fatty acid to reduce the feedback inhibition by acyl-ACP) and fadD (encoding acyl-CoA synthetase to enhance acyl-CoA supply), (ii) reduction of TAG degradation and precursor consumption by deleting four cellular lipases (cg0109, cg0110, cg1676 and cg1320) and the diacylglycerol kinase (cg2849), (iii) enhancement of fatty acid biosynthesis by deletion of fasR (cg2737, TetR-type transcriptional regulator of genes for the fatty acid biosynthesis), and (iv) elimination of the observed by-product formation of organic acids by blocking the acetic acid (pqo) and lactic acid production (ldh) pathways. The final strain (CgTesRtcEfasEbp/pZ8_TAG4) achieved a 7.5% yield of total fatty acids (2.38±0.05g/L intracellular fatty acids and 0.64±0.09g/L extracellular fatty acids) from 4% glucose in shake flasks after process optimization. This corresponds to maximum intracellular fatty acids content of 17.8±0.5% of the dry cell.
Erscheinungsjahr
2016
Zeitschriftentitel
Metab Eng
Band
33
Seite(n)
86-97
ISSN
1096-7176
eISSN
1096-7184
Page URI
https://pub.uni-bielefeld.de/record/2900055
Zitieren
Plassmeier J, Li Y, Rückert C, Sinskey AJ. Metabolic Engineering Corynebacterium glutamicum to Produce Triacylglycerols. Metab Eng. 2016;33:86-97.
Plassmeier, J., Li, Y., Rückert, C., & Sinskey, A. J. (2016). Metabolic Engineering Corynebacterium glutamicum to Produce Triacylglycerols. Metab Eng, 33, 86-97. doi:10.1016/j.ymben.2015.11.002
Plassmeier, Jens, Li, Youyuan, Rückert, Christian, and Sinskey, Anthony J. 2016. “Metabolic Engineering Corynebacterium glutamicum to Produce Triacylglycerols.”. Metab Eng 33: 86-97.
Plassmeier, J., Li, Y., Rückert, C., and Sinskey, A. J. (2016). Metabolic Engineering Corynebacterium glutamicum to Produce Triacylglycerols. Metab Eng 33, 86-97.
Plassmeier, J., et al., 2016. Metabolic Engineering Corynebacterium glutamicum to Produce Triacylglycerols. Metab Eng, 33, p 86-97.
J. Plassmeier, et al., “Metabolic Engineering Corynebacterium glutamicum to Produce Triacylglycerols.”, Metab Eng, vol. 33, 2016, pp. 86-97.
Plassmeier, J., Li, Y., Rückert, C., Sinskey, A.J.: Metabolic Engineering Corynebacterium glutamicum to Produce Triacylglycerols. Metab Eng. 33, 86-97 (2016).
Plassmeier, Jens, Li, Youyuan, Rückert, Christian, and Sinskey, Anthony J. “Metabolic Engineering Corynebacterium glutamicum to Produce Triacylglycerols.”. Metab Eng 33 (2016): 86-97.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
5 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Identification of novel lipid modifications and intermembrane dynamics in Corynebacterium glutamicum using high-resolution mass spectrometry.
Klatt S, Brammananth R, O'Callaghan S, Kouremenos KA, Tull D, Crellin PK, Coppel RL, McConville MJ., J Lipid Res 59(7), 2018
PMID: 29724782
Klatt S, Brammananth R, O'Callaghan S, Kouremenos KA, Tull D, Crellin PK, Coppel RL, McConville MJ., J Lipid Res 59(7), 2018
PMID: 29724782
Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products.
Kogure T, Inui M., Appl Microbiol Biotechnol 102(20), 2018
PMID: 30109397
Kogure T, Inui M., Appl Microbiol Biotechnol 102(20), 2018
PMID: 30109397
Dynamic decoupling of biomass and wax ester biosynthesis in Acinetobacter baylyi by an autonomously regulated switch.
Santala S, Efimova E, Santala V., Metab Eng Commun 7(), 2018
PMID: 30271720
Santala S, Efimova E, Santala V., Metab Eng Commun 7(), 2018
PMID: 30271720
High-efficiency extracellular release of free fatty acids from Aspergillus oryzae using non-ionic surfactants.
Tamano K, Miura A, Koike H, Kamisaka Y, Umemura M, Machida M., J Biotechnol 248(), 2017
PMID: 28300661
Tamano K, Miura A, Koike H, Kamisaka Y, Umemura M, Machida M., J Biotechnol 248(), 2017
PMID: 28300661
Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
Kogure T, Kubota T, Suda M, Hiraga K, Inui M., Metab Eng 38(), 2016
PMID: 27553883
Kogure T, Kubota T, Suda M, Hiraga K, Inui M., Metab Eng 38(), 2016
PMID: 27553883
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 26645801
PubMed | Europe PMC
Suchen in