The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role
Bandeira NAG, Garai S, Müller A, Bo C (2015)
Chemical Communications 51(85): 15596-15599.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bandeira, Nuno A. G.;
Garai, Somenath;
Müller, AchimUniBi ;
Bo, Carles
Einrichtung
Abstract / Bemerkung
The mechanism for the hydration of CO2 within a Keplerate nanocapsule is presented. A network of hydrogen bonds across the water layers in the first metal coordination sphere facilitates the proton abstraction and nucleophilic addition of water. The highly acidic properties of the polyoxometalate cluster are crucial for explaining the catalysed hydration.
Erscheinungsjahr
2015
Zeitschriftentitel
Chemical Communications
Band
51
Ausgabe
85
Seite(n)
15596-15599
ISSN
1359-7345
Page URI
https://pub.uni-bielefeld.de/record/2786442
Zitieren
Bandeira NAG, Garai S, Müller A, Bo C. The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role. Chemical Communications. 2015;51(85):15596-15599.
Bandeira, N. A. G., Garai, S., Müller, A., & Bo, C. (2015). The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role. Chemical Communications, 51(85), 15596-15599. doi:10.1039/c5cc06423f
Bandeira, Nuno A. G., Garai, Somenath, Müller, Achim, and Bo, Carles. 2015. “The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role”. Chemical Communications 51 (85): 15596-15599.
Bandeira, N. A. G., Garai, S., Müller, A., and Bo, C. (2015). The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role. Chemical Communications 51, 15596-15599.
Bandeira, N.A.G., et al., 2015. The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role. Chemical Communications, 51(85), p 15596-15599.
N.A.G. Bandeira, et al., “The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role”, Chemical Communications, vol. 51, 2015, pp. 15596-15599.
Bandeira, N.A.G., Garai, S., Müller, A., Bo, C.: The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role. Chemical Communications. 51, 15596-15599 (2015).
Bandeira, Nuno A. G., Garai, Somenath, Müller, Achim, and Bo, Carles. “The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role”. Chemical Communications 51.85 (2015): 15596-15599.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
2 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
A Molecular CO2 Reduction Catalyst Based on Giant Polyoxometalate {Mo368}.
Das S, Balaraju T, Barman S, Sreejith SS, Pochamoni R, Roy S., Front Chem 6(), 2018
PMID: 30450356
Das S, Balaraju T, Barman S, Sreejith SS, Pochamoni R, Roy S., Front Chem 6(), 2018
PMID: 30450356
Anions coordinating anions: analysis of the interaction between anionic Keplerate nanocapsules and their anionic ligands.
Melgar D, Bandeira NA, Bonet Avalos J, Bo C., Phys Chem Chem Phys 19(7), 2017
PMID: 28155941
Melgar D, Bandeira NA, Bonet Avalos J, Bo C., Phys Chem Chem Phys 19(7), 2017
PMID: 28155941
31 References
Daten bereitgestellt von Europe PubMed Central.
Aresta, 2010
Boot-Handford, Energy Environ. Sci. 7(), 2014
Encapsulated liquid sorbents for carbon dioxide capture.
Vericella JJ, Baker SE, Stolaroff JK, Duoss EB, Hardin JO 4th, Lewicki J, Glogowski E, Floyd WC, Valdez CA, Smith WL, Satcher JH Jr, Bourcier WL, Spadaccini CM, Lewis JA, Aines RD., Nat Commun 6(), 2015
PMID: 25652243
Vericella JJ, Baker SE, Stolaroff JK, Duoss EB, Hardin JO 4th, Lewicki J, Glogowski E, Floyd WC, Valdez CA, Smith WL, Satcher JH Jr, Bourcier WL, Spadaccini CM, Lewis JA, Aines RD., Nat Commun 6(), 2015
PMID: 25652243
Bhola, Int. J. Environ. Sci. Technol. 11(), 2014
A review of mineral carbonation technologies to sequester CO2.
Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM., Chem Soc Rev 43(23), 2014
PMID: 24983767
Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM., Chem Soc Rev 43(23), 2014
PMID: 24983767
D’Ambrosio, 2015
Solvent-mediated proton transfer in catalysis by carbonic anhydrase.
Silverman DN, McKenna R., Acc. Chem. Res. 40(8), 2007
PMID: 17550224
Silverman DN, McKenna R., Acc. Chem. Res. 40(8), 2007
PMID: 17550224
Greco, Energy Environ. Sci. 7(), 2014
Yong, J. Chem. Technol. Biotechnol. 90(), 2015
Synthetic analogues relevant to the structure and function of zinc enzymes.
Parkin G., Chem. Rev. 104(2), 2004
PMID: 14871139
Parkin G., Chem. Rev. 104(2), 2004
PMID: 14871139
Recycling of carbon dioxide to methanol and derived products - closing the loop.
Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA., Chem Soc Rev 43(23), 2014
PMID: 24935751
Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA., Chem Soc Rev 43(23), 2014
PMID: 24935751
The unprecedented catalytic activity of alkanolamine CO2 scrubbers in the cycloaddition of CO2 and oxiranes: a DFT endorsed study.
Roshan KR, Kim BM, Kathalikkattil AC, Tharun J, Won YS, Park DW., Chem. Commun. (Camb.) 50(89), 2014
PMID: 25034318
Roshan KR, Kim BM, Kathalikkattil AC, Tharun J, Won YS, Park DW., Chem. Commun. (Camb.) 50(89), 2014
PMID: 25034318
A DFT study on the mechanism of the cycloaddition reaction of CO2 to epoxides catalyzed by Zn(salphen) complexes.
Castro-Gomez F, Salassa G, Kleij AW, Bo C., Chemistry 19(20), 2013
PMID: 23512222
Castro-Gomez F, Salassa G, Kleij AW, Bo C., Chemistry 19(20), 2013
PMID: 23512222
Whiteoak, Green Chem. 16(), 2014
Using carbon dioxide as a building block in organic synthesis.
Liu Q, Wu L, Jackstell R, Beller M., Nat Commun 6(), 2015
PMID: 25600683
Liu Q, Wu L, Jackstell R, Beller M., Nat Commun 6(), 2015
PMID: 25600683
Najafabadi, Renewable Sustainable Energy Rev. 41(), 2015
Picking up 30 CO2 molecules by a porous metal oxide capsule based on the same number of receptors.
Garai S, Haupt ET, Bogge H, Merca A, Muller A., Angew. Chem. Int. Ed. Engl. 51(42), 2012
PMID: 23001843
Garai S, Haupt ET, Bogge H, Merca A, Muller A., Angew. Chem. Int. Ed. Engl. 51(42), 2012
PMID: 23001843
From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry.
Muller A, Gouzerh P., Chem Soc Rev 41(22), 2012
PMID: 22948798
Muller A, Gouzerh P., Chem Soc Rev 41(22), 2012
PMID: 22948798
Gated and differently functionalized (new) porous capsules direct encapsulates' structures: higher and lower density water.
Mitra T, Miro P, Tomsa AR, Merca A, Bogge H, Avalos JB, Poblet JM, Bo C, Muller A., Chemistry 15(8), 2009
PMID: 19130528
Mitra T, Miro P, Tomsa AR, Merca A, Bogge H, Avalos JB, Poblet JM, Bo C, Muller A., Chemistry 15(8), 2009
PMID: 19130528
Hydrophobic interactions and clustering in a porous capsule: option to remove hydrophobic materials from water.
Schaffer C, Todea AM, Bogge H, Petina OA, Rehder D, Haupt ET, Muller A., Chemistry 17(35), 2011
PMID: 21748814
Schaffer C, Todea AM, Bogge H, Petina OA, Rehder D, Haupt ET, Muller A., Chemistry 17(35), 2011
PMID: 21748814
Müller, Angew. Chem., Int. Ed. 37(), 1998
Catalysis in a porous molecular capsule: activation by regulated access to sixty metal centers spanning a truncated icosahedron.
Kopilevich S, Gil A, Garcia-Rates M, Bonet-Avalos J, Bo C, Muller A, Weinstock IA., J. Am. Chem. Soc. 134(31), 2012
PMID: 22765884
Kopilevich S, Gil A, Garcia-Rates M, Bonet-Avalos J, Bo C, Muller A, Weinstock IA., J. Am. Chem. Soc. 134(31), 2012
PMID: 22765884
A regioselective Huisgen reaction inside a Keplerate polyoxomolybdate nanoreactor.
Besson C, Schmitz S, Capella KM, Kopilevich S, Weinstock IA, Kogerler P., Dalton Trans 41(33), 2012
PMID: 22782444
Besson C, Schmitz S, Capella KM, Kopilevich S, Weinstock IA, Kogerler P., Dalton Trans 41(33), 2012
PMID: 22782444
Towards the experimental decomposition rate of carbonic acid (H2CO3) in aqueous solution.
Tautermann CS, Voegele AF, Loerting T, Kohl I, Hallbrucker A, Mayer E, Liedl KR., Chemistry 8(1), 2002
PMID: 11822465
Tautermann CS, Voegele AF, Loerting T, Kohl I, Hallbrucker A, Mayer E, Liedl KR., Chemistry 8(1), 2002
PMID: 11822465
Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
Nguyen MT, Matus MH, Jackson VE, Vu TN, Rustad JR, Dixon DA., J Phys Chem A 112(41), 2008
PMID: 18816037
Nguyen MT, Matus MH, Jackson VE, Vu TN, Rustad JR, Dixon DA., J Phys Chem A 112(41), 2008
PMID: 18816037
Yamabe, Theor. Chem. Acc. 130(), 2011
Welch, J. Phys. Chem. 73(), 1969
Bridging Static and Dynamical Descriptions of Chemical Reactions: An ab Initio Study of CO2 Interacting with Water Molecules.
Gallet GA, Pietrucci F, Andreoni W., J Chem Theory Comput 8(11), 2012
PMID: 26605570
Gallet GA, Pietrucci F, Andreoni W., J Chem Theory Comput 8(11), 2012
PMID: 26605570
Maksimov, Russ. Chem. Rev. 64(), 1995
Mayer, Int. J. Quantum Chem. 29(), 1986
Unprecedented and differently applicable pentagonal units in a dynamic library: a keplerate of the type {(W)W5}12{Mo2}30.
Schaffer C, Merca A, Bogge H, Todea AM, Kistler ML, Liu T, Thouvenot R, Gouzerh P, Muller A., Angew. Chem. Int. Ed. Engl. 48(1), 2009
PMID: 19035609
Schaffer C, Merca A, Bogge H, Todea AM, Kistler ML, Liu T, Thouvenot R, Gouzerh P, Muller A., Angew. Chem. Int. Ed. Engl. 48(1), 2009
PMID: 19035609
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 26359657
PubMed | Europe PMC
Suchen in