Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms

Hoess S, Frank-Fahle B, Lueders T, Traunspurger W (2015)
Environmental Toxicology and Chemistry 34(11): 2660-2669.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hoess, S.; Frank-Fahle, B.; Lueders, T.; Traunspurger, WalterUniBi
Erscheinungsjahr
2015
Zeitschriftentitel
Environmental Toxicology and Chemistry
Band
34
Ausgabe
11
Seite(n)
2660-2669
ISSN
0730-7268
eISSN
1552-8618
Page URI
https://pub.uni-bielefeld.de/record/2784358

Zitieren

Hoess S, Frank-Fahle B, Lueders T, Traunspurger W. Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms. Environmental Toxicology and Chemistry. 2015;34(11):2660-2669.
Hoess, S., Frank-Fahle, B., Lueders, T., & Traunspurger, W. (2015). Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms. Environmental Toxicology and Chemistry, 34(11), 2660-2669. doi:10.1002/etc.3091
Hoess, S., Frank-Fahle, B., Lueders, T., and Traunspurger, Walter. 2015. “Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms”. Environmental Toxicology and Chemistry 34 (11): 2660-2669.
Hoess, S., Frank-Fahle, B., Lueders, T., and Traunspurger, W. (2015). Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms. Environmental Toxicology and Chemistry 34, 2660-2669.
Hoess, S., et al., 2015. Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms. Environmental Toxicology and Chemistry, 34(11), p 2660-2669.
S. Hoess, et al., “Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms”, Environmental Toxicology and Chemistry, vol. 34, 2015, pp. 2660-2669.
Hoess, S., Frank-Fahle, B., Lueders, T., Traunspurger, W.: Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms. Environmental Toxicology and Chemistry. 34, 2660-2669 (2015).
Hoess, S., Frank-Fahle, B., Lueders, T., and Traunspurger, Walter. “Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms”. Environmental Toxicology and Chemistry 34.11 (2015): 2660-2669.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Agglomeration of Escherichia coli with Positively Charged Nanoparticles Can Lead to Artifacts in a Standard Caenorhabditis elegans Toxicity Assay.
Hanna SK, Montoro Bustos AR, Peterson AW, Reipa V, Scanlan LD, Hosbas Coskun S, Cho TJ, Johnson ME, Hackley VA, Nelson BC, Winchester MR, Elliott JT, Petersen EJ., Environ Sci Technol 52(10), 2018
PMID: 29672024

61 References

Daten bereitgestellt von Europe PubMed Central.

Nanosized iron oxide colloids strongly enhance microbial iron reduction.
Bosch J, Heister K, Hofmann T, Meckenstock RU., Appl. Environ. Microbiol. 76(1), 2009
PMID: 19915036
Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions.
Tobler NB, Hofstetter TB, Straub KL, Fontana D, Schwarzenbach RP., Environ. Sci. Technol. 41(22), 2007
PMID: 18075086
Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.
Braunschweig J, Bosch J, Meckenstock RU., N Biotechnol 30(6), 2013
PMID: 23557995
Fast microbial reduction of ferrihydrite colloids from a soil effluent
Fritzsche, Geochim Cosmochim Acta 77(), 2012
Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions.
Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV., Environ. Sci. Technol. 41(1), 2007
PMID: 17265960

AUTHOR UNKNOWN, 0
In vitro evaluation of ferrihydrite as an enterosorbent for arsenic from contaminated drinking water.
Taylor JF, Robinson A, Johnson N, Marroquin-Cardona A, Brattin B, Taylor R, Phillips TD., Environ. Sci. Technol. 43(14), 2009
PMID: 19708388
Use of iron oxide nanomaterials in wastewater treatment: a review.
Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF., Sci. Total Environ. 424(), 2012
PMID: 22391097
Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?
Grieger KD, Fjordboge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A., J. Contam. Hydrol. 118(3-4), 2010
PMID: 20813426

Cornell, 2003
Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro.
Auffan M, Rose J, Wiesner MR, Bottero JY., Environ. Pollut. 157(4), 2008
PMID: 19013699
Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.
Karlsson HL, Cronholm P, Gustafsson J, Moller L., Chem. Res. Toxicol. 21(9), 2008
PMID: 18710264
Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli.
Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY., Environ. Sci. Technol. 42(17), 2008
PMID: 18800556
Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.
Li K, Chen Y, Zhang W, Pu Z, Jiang L, Chen Y., Chem. Res. Toxicol. 25(8), 2012
PMID: 22693953
Size- and composition-dependent toxicity of synthetic and soil-derived Fe oxide colloids for the nematode Caenorhabditis elegans.
Hoss S, Fritzsche A, Meyer C, Bosch J, Meckenstock RU, Totsche KU., Environ. Sci. Technol. 49(1), 2014
PMID: 25438192
Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.
Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D., PLoS ONE 8(12), 2013
PMID: 24349575
Metal ion binding to iron oxides
Ponthieu, Geochim Cosmochim Acta 70(), 2006

Chen, 1989
Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60).
Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB., Aquat. Toxicol. 86(3), 2007
PMID: 18190976
Bottom-up effects on freshwater bacterivorous nematode populations: A microcosm approach
Gaudes, Hydrobiologia 707(), 2013
Meiofauna enhances organic matter mineralization in soft sediment ecosystems
Nascimento, Limnol Oceanogr 57(), 2012
Meiobenthic community patterns of oligotrophic and deep Lake Constance in relation to water depth and nutrients
Traunspurger, Fundam Appl Limnol 180(), 2012
Do nematode mucus secretions affect bacterial growth
Moens, Aquat Microb Ecol 40(), 2005
Bathymetric, seasonal and vertical distribution of feeding types of nematodes in an oligotrophic lake
Traunspurger, Vie en Milieu 47(), 1997
The effects of nematodes on bacterial activity and abundance in a freshwater sediment.
Traunspurger W, Bergtold M, Goedkoop W., Oecologia 112(1), 1997
PMID: 28307367
Influence of bacterivorous nematodes on the decomposition of cordgrass
De, J Exp Mar Bio Ecol 296(), 2003
Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study.
De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J., Environ. Microbiol. 6(7), 2004
PMID: 15186352
Fluctuating food availability may permit coexistence in bacterivorous nematodes
Schroeder, Fundam Appl Limnol 178(), 2010
Effects of nutrient enrichment on the trophic structure and species composition of freshwater nematodes-A microcosm study
Ristau, Freshw Sci 32(), 2013
The use of terrestrial and aquatic microcosms and mesocosms for the ecological risk assessment of veterinary medicinal products.
Van den Brink PJ, Tarazona JV, Solomon KR, Knacker T, Van den Brink NW, Brock TC, Hoogland JP., Environ. Toxicol. Chem. 24(4), 2005
PMID: 15839555
The nematode community in cyanobacterial biofilms in the river Llobregat, Spain
Gaudes, Nematology 8(), 2006
Benthic production by micro-, meio-, and macrobenthos in the profundal zone of an oligotrophic lake
Bergtold, J North Am Benthol Soc 24(), 2005
Secondary production of a zoobenthic community under metal stress.
Faupel M, Traunspurger W., Water Res. 46(10), 2012
PMID: 22521948
The roles of biological interactions and pollutant contamination in shaping microbial benthic community structure.
Louati H, Said OB, Soltani A, Got P, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O., Chemosphere 93(10), 2013
PMID: 24206831
Experimental studies with nematodes in ecotoxicology: an overview.
Hagerbaumer A, Hoss S, Heininger P, Traunspurger W., J. Nematol. 47(1), 2015
PMID: 25861113
Seasonal variation of biodiversity and assemblage structure in freshwater nematodes
Michiels, Arch Hydrobiol 163(), 2005
Structural and magnetic characterization of synthetic ferrihydrite nanoparticles
Carta, Mater Chem Phys 113(), 2009
Organic matter mineralization with reduction of ferric iron in anaerobic sediments.
Lovley DR, Phillips EJ., Appl. Environ. Microbiol. 51(4), 1986
PMID: 16347032
Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms.
Brinke M, Hoss S, Fink G, Ternes TA, Heininger P, Traunspurger W., Aquat. Toxicol. 99(2), 2010
PMID: 20451263

AUTHOR UNKNOWN, 0
Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments.
Hammes F, Goldschmidt F, Vital M, Wang Y, Egli T., Water Res. 44(13), 2010
PMID: 20605621
Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP.
Pilloni G, von Netzer F, Engel M, Lueders T., FEMS Microbiol. Ecol. 78(1), 2011
PMID: 21385190
Analysis of T-RFLP data using analysis of variance and ordination methods: a comparative study.
Culman SW, Gauch HG, Blackwood CB, Thies JE., J. Microbiol. Methods 75(1), 2008
PMID: 18584903
T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles.
Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG., FEMS Microbiol. Ecol. 54(3), 2005
PMID: 16332335

AUTHOR UNKNOWN, 0
A rapid method for the transfer of nematodes from fixative to anhydrous glycerin
Seinhorst, Nematologica 4(), 1959
Nematode species at risk--a metric to assess pollution in soft sediments of freshwaters.
Hoss S, Claus E, Von der Ohe PC, Brinke M, Gude H, Heininger P, Traunspurger W., Environ Int 37(5), 2011
PMID: 21482435
Principal response curves: Analysis of time dependent multivariate responses of biological community to stress
Van, Environ Toxicol Chem 18(), 1999
Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms
Waychunas, J Nanoparticle Res 7(), 2005
The effect of adsorbed humic substances on the colloid stability of haematite particles
Tipping, Colloids and Surfaces 5(), 1982
Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests
García, Desalination 269(), 2011
The coating makes the difference: acute effects of iron oxide nanoparticles on Daphnia magna.
Baumann J, Koser J, Arndt D, Filser J., Sci. Total Environ. 484(), 2014
PMID: 24705300
Evaluation of the microbial growth response to inorganic nanoparticles.
Williams DN, Ehrman SH, Pulliam Holoman TR., J Nanobiotechnology 4(), 2006
PMID: 16507102
Indirect effects of contaminants in aquatic ecosystems.
Fleeger JW, Carman KR, Nisbet RM., Sci. Total Environ. 317(1-3), 2003
PMID: 14630423
Experimental investigation of the effects of polynuclear aromatic hydrocarbons on an estuarine sediment food web
Carman, Mar Environ Res 40(), 1995
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26031573
PubMed | Europe PMC

Suchen in

Google Scholar