Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

Wegener G, Krukenberg V, Riedel D, Tegetmeyer H, Boetius A (2015)
Nature 526(7574): 587-590.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar; Tegetmeyer, HalinaUniBi ; Boetius, Antje
Abstract / Bemerkung
The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia.
Page URI


Wegener G, Krukenberg V, Riedel D, Tegetmeyer H, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526(7574):587-590.
Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H., & Boetius, A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 526(7574), 587-590. doi:10.1038/nature15733
Wegener, Gunter, Krukenberg, Viola, Riedel, Dietmar, Tegetmeyer, Halina, and Boetius, Antje. 2015. “Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.”. Nature 526 (7574): 587-590.
Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H., and Boetius, A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587-590.
Wegener, G., et al., 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 526(7574), p 587-590.
G. Wegener, et al., “Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.”, Nature, vol. 526, 2015, pp. 587-590.
Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H., Boetius, A.: Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 526, 587-590 (2015).
Wegener, Gunter, Krukenberg, Viola, Riedel, Dietmar, Tegetmeyer, Halina, and Boetius, Antje. “Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.”. Nature 526.7574 (2015): 587-590.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

84 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology.
McCarty NS, Ledesma-Amaro R., Trends Biotechnol 37(2), 2019
PMID: 30497870
Contrasting Pathways for Anaerobic Methane Oxidation in Gulf of Mexico Cold Seep Sediments.
Vigneron A, Alsop EB, Cruaud P, Philibert G, King B, Baksmaty L, Lavallee D, Lomans BP, Eloe-Fadrosh E, Kyrpides NC, Head IM, Tsesmetzis N., mSystems 4(1), 2019
PMID: 30834326
Asgard archaea capable of anaerobic hydrocarbon cycling.
Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, Teske AP, Ettema TJG, Baker BJ., Nat Commun 10(1), 2019
PMID: 31015394
The Biogeochemical Sulfur Cycle of Marine Sediments.
Jørgensen BB, Findlay AJ, Pellerin A., Front Microbiol 10(), 2019
PMID: 31105660
Archaea Are Interactive Components of Complex Microbiomes.
Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA., Trends Microbiol 26(1), 2018
PMID: 28826642
Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms.
Walker DJ, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, Lovley DR., ISME J 12(1), 2018
PMID: 28872631
Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment.
Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, Kato S, Sunamura M, Hirota A, Togo YS, Ito K, Fukuda A, Iwatsuki T, Mizuno T, Komatsu DD, Tsunogai U, Ishimura T, Amano Y, Thomas BC, Banfield JF, Suzuki Y., ISME J 12(1), 2018
PMID: 28885627
Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.
Gambelli L, Guerrero-Cruz S, Mesman RJ, Cremers G, Jetten MSM, Op den Camp HJM, Kartal B, Lueke C, van Niftrik L., Appl Environ Microbiol 84(3), 2018
PMID: 29150508
Anodic and Cathodic Extracellular Electron Transfer by the Filamentous Bacterium Ardenticatena maritima 110S.
Kawaichi S, Yamada T, Umezawa A, McGlynn SE, Suzuki T, Dohmae N, Yoshida T, Sako Y, Matsushita N, Hashimoto K, Nakamura R., Front Microbiol 9(), 2018
PMID: 29467724
Multi-heme cytochromes provide a pathway for survival in energy-limited environments.
Deng X, Dohmae N, Nealson KH, Hashimoto K, Okamoto A., Sci Adv 4(2), 2018
PMID: 29464208
Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas.
Marlow JJ, Kumar A, Enalls BC, Reynard LM, Tuross N, Stephanopoulos G, Girguis P., Biotechnol Bioeng 115(6), 2018
PMID: 29460958
Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia.
Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, Wegener G., Environ Microbiol 20(5), 2018
PMID: 29468803
A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction.
Cai C, Leu AO, Xie GJ, Guo J, Feng Y, Zhao JX, Tyson GW, Yuan Z, Hu S., ISME J 12(8), 2018
PMID: 29662147
Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.
Ren G, Ma A, Zhang Y, Deng Y, Zheng G, Zhuang X, Zhuang G, Fortin D., Environ Microbiol 20(7), 2018
PMID: 29624877
Subgroup Characteristics of Marine Methane-Oxidizing ANME-2 Archaea and Their Syntrophic Partners as Revealed by Integrated Multimodal Analytical Microscopy.
McGlynn SE, Chadwick GL, O'Neill A, Mackey M, Thor A, Deerinck TJ, Ellisman MH, Orphan VJ., Appl Environ Microbiol 84(11), 2018
PMID: 29625978
The hunt for the most-wanted chemolithoautotrophic spookmicrobes.
In 't Zandt MH, de Jong AE, Slomp CP, Jetten MS., FEMS Microbiol Ecol 94(6), 2018
PMID: 29873717
Archaea-First and the Co-Evolutionary Diversification of Domains of Life.
Staley JT, Caetano-Anollés G., Bioessays 40(8), 2018
PMID: 29944192
Fluctuations in populations of subsurface methane oxidizers in coordination with changes in electron acceptor availability.
Magnabosco C, Timmers PHA, Lau MCY, Borgonie G, Linage-Alvarez B, Kuloyo O, Alleva R, Kieft TL, Slater GF, van Heerden E, Sherwood Lollar B, Onstott TC., FEMS Microbiol Ecol 94(7), 2018
PMID: 29767724
Stimulatory Effect of Magnetite Nanoparticles on a Highly Enriched Butyrate-Oxidizing Consortium.
Fu L, Song T, Zhang W, Zhang J, Lu Y., Front Microbiol 9(), 2018
PMID: 30026737
Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms.
Ueki T, Nevin KP, Rotaru AE, Wang LY, Ward JE, Woodard TL, Lovley DR., MBio 9(4), 2018
PMID: 29991583
Interkingdom microbial consortia mechanisms to guide biotechnological applications.
Zhang S, Merino N, Okamoto A, Gedalanga P., Microb Biotechnol 11(5), 2018
PMID: 30014573
Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment.
Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU., Front Microbiol 9(), 2018
PMID: 30233524
Archaeal biofilm formation.
van Wolferen M, Orell A, Albers SV., Nat Rev Microbiol 16(11), 2018
PMID: 30097647
Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.
Tremblay PL, Angenent LT, Zhang T., Trends Biotechnol 35(4), 2017
PMID: 27816255
Gaia and her microbiome.
Stolz JF., FEMS Microbiol Ecol 93(2), 2017
PMID: 27940647
Topic of Influence, Methane and Microbes.
Imachi H., Microbes Environ 32(4), 2017
PMID: 29279575
Reverse Methanogenesis and Respiration in Methanotrophic Archaea.
Timmers PH, Welte CU, Koehorst JJ, Plugge CM, Jetten MS, Stams AJ., Archaea 2017(), 2017
PMID: 28154498
Symbiosis in eukaryotic evolution.
López-García P, Eme L, Moreira D., J Theor Biol 434(), 2017
PMID: 28254477
Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.
Bhattarai S, Cassarini C, Gonzalez-Gil G, Egger M, Slomp CP, Zhang Y, Esposito G, Lens PNL., Microb Ecol 74(3), 2017
PMID: 28389729
The life sulfuric: microbial ecology of sulfur cycling in marine sediments.
Wasmund K, Mußmann M, Loy A., Environ Microbiol Rep 9(4), 2017
PMID: 28419734
The Physiology of Phagocytosis in the Context of Mitochondrial Origin.
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB., Microbiol Mol Biol Rev 81(3), 2017
PMID: 28615286
Communal metabolism of methane and the rare Earth element switch.
Yu Z, Chistoserdova L., J Bacteriol 199(22), 2017
PMID: 28630125
Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates.
Marlow JJ, Steele JA, Ziebis W, Scheller S, Case D, Reynard LM, Orphan VJ., mSphere 2(4), 2017
PMID: 28861523
Extracellular polymeric substances are transient media for microbial extracellular electron transfer.
Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen HEM, Ulstrup J, Zhao F., Sci Adv 3(7), 2017
PMID: 28695213
Syntrophy Goes Electric: Direct Interspecies Electron Transfer.
Lovley DR., Annu Rev Microbiol 71(), 2017
PMID: 28697668
Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes.
Gao Y, Lee J, Neufeld JD, Park J, Rittmann BE, Lee HS., Sci Rep 7(1), 2017
PMID: 28698657
Marine archaea and archaeal viruses under global change.
Danovaro R, Rastelli E, Corinaldesi C, Tangherlini M, Dell'Anno A., F1000Res 6(), 2017
PMID: 29034077
Stay connected: Electrical conductivity of microbial aggregates.
Li C, Lesnik KL, Liu H., Biotechnol Adv 35(6), 2017
PMID: 28768145
Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life.
Spang A, Caceres EF, Ettema TJG., Science 357(6351), 2017
PMID: 28798101
The growing tree of Archaea: new perspectives on their diversity, evolution and ecology.
Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S., ISME J 11(11), 2017
PMID: 28777382
Microbial Community Composition and Functional Capacity in a Terrestrial Ferruginous, Sulfate-Depleted Mud Volcano.
Tu TH, Wu LW, Lin YS, Imachi H, Lin LH, Wang PL., Front Microbiol 8(), 2017
PMID: 29163423
Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay.
Jochum LM, Chen X, Lever MA, Loy A, Jørgensen BB, Schramm A, Kjeldsen KU., Appl Environ Microbiol 83(23), 2017
PMID: 28939599
A Simple and Efficient RNA Extraction Method from Deep-Sea Hydrothermal Vent Chimney Structures.
Muto H, Takaki Y, Hirai M, Mino S, Sawayama S, Takai K, Nakagawa S., Microbes Environ 32(4), 2017
PMID: 29187693
Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin.
Dowell F, Cardman Z, Dasarathy S, Kellermann MY, Lipp JS, Ruff SE, Biddle JF, McKay LJ, MacGregor BJ, Lloyd KG, Albert DB, Mendlovitz H, Hinrichs KU, Teske A., Front Microbiol 7(), 2016
PMID: 26858698
BIOGEOCHEMISTRY. A new diet for methane oxidizers.
Rotaru AE, Thamdrup B., Science 351(6274), 2016
PMID: 26912841
Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.
Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ., Science 351(6274), 2016
PMID: 26912857
Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane.
Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K., Front Microbiol 7(), 2016
PMID: 26870011
Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy.
Ruff SE, Kuhfuss H, Wegener G, Lott C, Ramette A, Wiedling J, Knittel K, Weber M., Front Microbiol 7(), 2016
PMID: 27065954
Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane.
Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, Berg JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G., Environ Microbiol 18(9), 2016
PMID: 26971539
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.
Greening C, Ahmed FH, Mohamed AE, Lee BM, Pandey G, Warden AC, Scott C, Oakeshott JG, Taylor MC, Jackson CJ., Microbiol Mol Biol Rev 80(2), 2016
PMID: 27122598
Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems.
Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N., Trends Biotechnol 34(11), 2016
PMID: 27178018
Energy for two: New archaeal lineages and the origin of mitochondria.
Martin WF, Neukirchen S, Zimorski V, Gould SB, Sousa FL., Bioessays 38(9), 2016
PMID: 27339178
Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia.
Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ., Proc Natl Acad Sci U S A 113(28), 2016
PMID: 27357680
Biosensoric potential of microbial fuel cells.
Schneider G, Kovács T, Rákhely G, Czeller M., Appl Microbiol Biotechnol 100(16), 2016
PMID: 27401925
Tracking microbial interactions with NanoSIMS.
Musat N, Musat F, Weber PK, Pett-Ridge J., Curr Opin Biotechnol 41(), 2016
PMID: 27419912
Decoding molecular interactions in microbial communities.
Abreu NA, Taga ME., FEMS Microbiol Rev 40(5), 2016
PMID: 27417261
Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.
Lawton TJ, Rosenzweig AC., J Am Chem Soc 138(30), 2016
PMID: 27366961
Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications.
Cheng Q, Call DF., Environ Sci Process Impacts 18(8), 2016
PMID: 27349520
The quantum mitochondrion and optimal health.
Nunn AV, Guy GW, Bell JD., Biochem Soc Trans 44(4), 2016
PMID: 27528758
Electromicrobiology: realities, grand challenges, goals and predictions.
Nealson KH, Rowe AR., Microb Biotechnol 9(5), 2016
PMID: 27506517
Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments.
Egger M, Egger M, Lenstra W, Jong D, Meysman FJ, Sapart CJ, van der Veen C, Röckmann T, Gonzalez S, Slomp CP., PLoS One 11(8), 2016
PMID: 27560511
Extracellular electron transfer mechanisms between microorganisms and minerals.
Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu HQ, Fredrickson JK., Nat Rev Microbiol 14(10), 2016
PMID: 27573579
Thermophilic archaea activate butane via alkyl-coenzyme M formation.
Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow HH, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F., Nature 539(7629), 2016
PMID: 27749816
Microbial Nanowires: An Electrifying Tale.
Sure SK, Ackland LM, Torriero AA, Adholeya A, Kochar M., Microbiology (), 2016
PMID: 27902405
Microbiology: Deep-sea secrets of butane metabolism.
Ragsdale SW., Nature 539(7629), 2016
PMID: 27853208
Nitrate- and nitrite-dependent anaerobic oxidation of methane.
Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Lüke C, Reimann J., Environ Microbiol Rep 8(6), 2016
PMID: 27753265
An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers.
Lau MC, Kieft TL, Kuloyo O, Linage-Alvarez B, van Heerden E, Lindsay MR, Magnabosco C, Wang W, Wiggins JB, Guo L, Perlman DH, Kyin S, Shwe HH, Harris RL, Oh Y, Yi MJ, Purtschert R, Slater GF, Ono S, Wei S, Li L, Sherwood Lollar B, Onstott TC., Proc Natl Acad Sci U S A 113(49), 2016
PMID: 27872277
Microbiology: Conductive consortia.
Wagner M., Nature 526(7574), 2015
PMID: 26490616

55 References

Daten bereitgestellt von Europe PubMed Central.

Oceanic methane biogeochemistry.
Reeburgh WS., Chem. Rev. 107(2), 2007
PMID: 17261072

Boetius, Nat. Geosci. 6(), 2013
Methane-consuming archaebacteria in marine sediments.
Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF, Hayes JM., Nature 398(6730), 1999
PMID: 10235261
A marine microbial consortium apparently mediating anaerobic oxidation of methane.
Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O., Nature 407(6804), 2000
PMID: 11034209
Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.
Orphan VJ, Hinrichs KU, Ussler W 3rd, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF., Appl. Environ. Microbiol. 67(4), 2001
PMID: 11282650
Thermophilic anaerobic oxidation of methane by marine microbial consortia.
Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs KU, Teske A, Boetius A, Wegener G., ISME J 5(12), 2011
PMID: 21697963
Methane as fuel for anaerobic microorganisms.
Thauer RK, Shima S., Ann. N. Y. Acad. Sci. 1125(), 2007
PMID: 18096853

Extracellular electron transfer via microbial nanowires.
Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR., Nature 435(7045), 2005
PMID: 15973408
Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria.
Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR., Science 330(6009), 2010
PMID: 21127257
Anaerobic oxidation of methane: progress with an unknown process.
Knittel K, Boetius A., Annu. Rev. Microbiol. 63(), 2009
PMID: 19575572
Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.
Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter M, Klages M, Foucher JP, Boetius A., Nature 443(7113), 2006
PMID: 17051217
Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade.
Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R., Environ. Microbiol. 12(8), 2010
PMID: 21966923

Hoehler, Glob. Biogeochem. Cycles 8(), 1994
A conspicuous nickel protein in microbial mats that oxidize methane anaerobically.
Kruger M, Meyerdierks A, Glockner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Bocher R, Thauer RK, Shima S., Nature 426(6968), 2003
PMID: 14685246
Reverse methanogenesis: testing the hypothesis with environmental genomics.
Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF., Science 305(5689), 2004
PMID: 15353801
Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group.
Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glockner FO, Reinhardt R, Amann R., Environ. Microbiol. 12(2), 2009
PMID: 19878267
Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia.
Milucka J, Widdel F, Shima S., Environ. Microbiol. 15(5), 2012
PMID: 23095164
Zero-valent sulphur is a key intermediate in marine methane oxidation.
Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM., Nature 491(7425), 2012
PMID: 23135396
Energetics of syntrophic cooperation in methanogenic degradation.
Schink B., Microbiol. Mol. Biol. Rev. 61(2), 1997
PMID: 9184013
Electron transfer in syntrophic communities of anaerobic bacteria and archaea.
Stams AJ, Plugge CM., Nat. Rev. Microbiol. 7(8), 2009
PMID: 19609258
Methyl sulfides as intermediates in the anaerobic oxidation of methane.
Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH., Environ. Microbiol. 10(1), 2007
PMID: 17903217
Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments.
Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH., Environ. Microbiol. 14(5), 2012
PMID: 22404914
Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association.
Nagarajan H, Embree M, Rotaru AE, Shrestha PM, Feist AM, Palsson BO, Lovley DR, Zengler K., Nat Commun 4(), 2013
PMID: 24264237

Rotaru, Energ. Environ. Sci. 7(), 2014
Structural basis for metallic-like conductivity in microbial nanowires.
Malvankar NS, Vargas M, Nevin K, Tremblay PL, Evans-Lutterodt K, Nykypanchuk D, Martz E, Tuominen MT, Lovley DR., MBio 6(2), 2015
PMID: 25736881
Genome of Geobacter sulfurreducens: metal reduction in subsurface environments.
Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM., Science 302(5652), 2003
PMID: 14671304

Reitner, Palaeogeogr. Palaeoclimatol. Palaeoecol. 227(), 2005

DNA recovery from soils of diverse composition.
Zhou J, Bruns MA, Tiedje JM., Appl. Environ. Microbiol. 62(2), 1996
PMID: 8593035
Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel.
Massana R, Murray AE, Preston CM, DeLong EF., Appl. Environ. Microbiol. 63(1), 1997
PMID: 8979338
Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.
Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW., Appl. Environ. Microbiol. 68(4), 2002
PMID: 11916723
ARB: a software environment for sequence data.
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH., Nucleic Acids Res. 32(4), 2004
PMID: 14985472
SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB.
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO., Nucleic Acids Res. 35(21), 2007
PMID: 17947321
Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria.
Pernthaler A, Pernthaler J, Amann R., Appl. Environ. Microbiol. 68(6), 2002
PMID: 12039771

Steudel, Z. Naturforsch. B Chem. Sci. 43(), 1988

Cord-Ruwisch, Microbiol. Meth. 4(), 1985
SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA., J. Comput. Biol. 19(5), 2012
PMID: 22506599
The binning of metagenomic contigs for microbial physiology of mixed cultures.
Strous M, Kraft B, Bisdorf R, Tegetmeyer HE., Front Microbiol 3(), 2012
PMID: 23227024
Prokka: rapid prokaryotic genome annotation.
Seemann T., Bioinformatics 30(14), 2014
PMID: 24642063
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
JCoast - a biologist-centric software tool for data mining and comparison of prokaryotic (meta)genomes.
Richter M, Lombardot T, Kostadinov I, Kottmann R, Duhaime MB, Peplies J, Glockner FO., BMC Bioinformatics 9(), 2008
PMID: 18380896
Shifting the genomic gold standard for the prokaryotic species definition.
Richter M, Rossello-Mora R., Proc. Natl. Acad. Sci. U.S.A. 106(45), 2009
PMID: 19855009

iPfam: a database of protein family and domain interactions found in the Protein Data Bank.
Finn RD, Miller BL, Clements J, Bateman A., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24297255
The TIGRFAMs database of protein families.
Haft DH, Selengut JD, White O., Nucleic Acids Res. 31(1), 2003
PMID: 12520025
PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS., Bioinformatics 26(13), 2010
PMID: 20472543
RNA-Seq gene expression estimation with read mapping uncertainty.
Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN., Bioinformatics 26(4), 2009
PMID: 20022975


Conrad, Arch. Microbiol. 155(), 1990

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 26490622
PubMed | Europe PMC

Suchen in

Google Scholar