Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction

Peng J, Alam S, Radhakrishnan K, Mariappan M, Rudolph MG, May C, Dierks T, von Figura K, Schmidt B (2015)
FEBS Journal 282(17): 3262-3274.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Peng, Jianhe; Alam, SarfarazUniBi; Radhakrishnan, KarthikeyanUniBi; Mariappan, Malaiyalam; Rudolph, Markus Georg; May, Caroline; Dierks, ThomasUniBi; von Figura, Kurt; Schmidt, Bernhard
Abstract / Bemerkung
C alpha-formylglycine (FGly) is the catalytic residue of sulfatases in eukaryotes. It is generated by a unique post-translational modification catalysed by the FGly-generating enzyme (FGE) in the endoplasmic reticulum. FGE oxidizes a cysteine residue within the conserved CxPxR sequence motif of nascent sulfatase polypeptides to FGly. Here we show that this oxidation is strictly dependent on molecular oxygen (O-2) and consumes 1 mol O-2 per mol FGly formed. For maximal activity FGE requires an O-2 concentration of 9% (105 mu M). Sustained FGE activity further requires the presence of a thiol-based reductant such as DTT. FGly is also formed in the absence of DTT, but its formation ceases rapidly. Thus inactivated FGE accumulates in which the cysteine pair Cys336/Cys341 in the catalytic site is oxidized to form disulfide bridges between either Cys336 and Cys341 or Cys341 and the CxPxR cysteine of the sulfatase. These results strongly suggest that the Cys336/Cys341 pair is directly involved in the O-2-dependent conversion of the CxPxR cysteine to FGly. The available data characterize eukaryotic FGE as a monooxygenase, in which Cys336/Cys341 disulfide bridge formation donates the electrons required to reduce one oxygen atom of O-2 to water while the other oxygen atom oxidizes the CxPxR cysteine to FGly. Regeneration of a reduced Cys336/Cys341 pair is accomplished in vivo by a yet unknown reductant of the endoplasmic reticulum or in vitro by DTT. Remarkably, this monooxygenase reaction utilizes O-2 without involvement of any activating cofactor.
Stichworte
endoplasmic reticulum; multiple sulfatase deficiency; monooxygenase; formylglycine-generating enzyme; catalysis
Erscheinungsjahr
2015
Zeitschriftentitel
FEBS Journal
Band
282
Ausgabe
17
Seite(n)
3262-3274
ISSN
1742-464X
Page URI
https://pub.uni-bielefeld.de/record/2780450

Zitieren

Peng J, Alam S, Radhakrishnan K, et al. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction. FEBS Journal. 2015;282(17):3262-3274.
Peng, J., Alam, S., Radhakrishnan, K., Mariappan, M., Rudolph, M. G., May, C., Dierks, T., et al. (2015). Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction. FEBS Journal, 282(17), 3262-3274. doi:10.1111/febs.13347
Peng, Jianhe, Alam, Sarfaraz, Radhakrishnan, Karthikeyan, Mariappan, Malaiyalam, Rudolph, Markus Georg, May, Caroline, Dierks, Thomas, von Figura, Kurt, and Schmidt, Bernhard. 2015. “Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction”. FEBS Journal 282 (17): 3262-3274.
Peng, J., Alam, S., Radhakrishnan, K., Mariappan, M., Rudolph, M. G., May, C., Dierks, T., von Figura, K., and Schmidt, B. (2015). Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction. FEBS Journal 282, 3262-3274.
Peng, J., et al., 2015. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction. FEBS Journal, 282(17), p 3262-3274.
J. Peng, et al., “Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction”, FEBS Journal, vol. 282, 2015, pp. 3262-3274.
Peng, J., Alam, S., Radhakrishnan, K., Mariappan, M., Rudolph, M.G., May, C., Dierks, T., von Figura, K., Schmidt, B.: Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction. FEBS Journal. 282, 3262-3274 (2015).
Peng, Jianhe, Alam, Sarfaraz, Radhakrishnan, Karthikeyan, Mariappan, Malaiyalam, Rudolph, Markus Georg, May, Caroline, Dierks, Thomas, von Figura, Kurt, and Schmidt, Bernhard. “Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction”. FEBS Journal 282.17 (2015): 3262-3274.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes.
Krüger T, Weiland S, Falck G, Gerlach M, Boschanski M, Alam S, Müller KM, Dierks T, Sewald N., Angew Chem Int Ed Engl 57(24), 2018
PMID: 29579347
Copper is a Cofactor of the Formylglycine-Generating Enzyme.
Knop M, Dang TQ, Jeschke G, Seebeck FP., Chembiochem 18(2), 2017
PMID: 27862795

28 References

Daten bereitgestellt von Europe PubMed Central.

A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
von Figura K, Schmidt B, Selmer T, Dierks T., Bioessays 20(6), 1998
PMID: 9699462
Sulfatases and human disease.
Diez-Roux G, Ballabio A., Annu Rev Genomics Hum Genet 6(), 2005
PMID: 16124866
A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016
Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
Dierks T, Schmidt B, von Figura K., Proc. Natl. Acad. Sci. U.S.A. 94(22), 1997
PMID: 9342345
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J. 18(8), 1999
PMID: 10205163
Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease - Lysosomal storage disorders caused by defects of non-lysosomal proteins.
Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B., Biochim. Biophys. Acta 1793(4), 2008
PMID: 19124046
Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine.
Recksiek M, Selmer T, Dierks T, Schmidt B, von Figura K., J. Biol. Chem. 273(11), 1998
PMID: 9497327
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.
Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A., Cell 113(4), 2003
PMID: 12757706
The non-catalytic N-terminal extension of formylglycine-generating enzyme is required for its biological activity and retention in the endoplasmic reticulum.
Mariappan M, Gande SL, Radhakrishnan K, Schmidt B, Dierks T, von Figura K., J. Biol. Chem. 283(17), 2008
PMID: 18305113
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme
Roeser, Proc Natl Acad Sci USA 103(), 2006
Molecular characterization of the human Calpha-formylglycine-generating enzyme.
Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T., J. Biol. Chem. 280(15), 2005
PMID: 15657036
Probing the oxygen-binding site of the human formylglycine-generating enzyme using halide ions.
Roeser D, Schmidt B, Preusser-Kunze A, Rudolph MG., Acta Crystallogr. D Biol. Crystallogr. 63(Pt 5), 2007
PMID: 17452787
Function and structure of a prokaryotic formylglycine-generating enzyme.
Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR., J. Biol. Chem. 283(29), 2008
PMID: 18390551
Screening for disulfide bonds in proteins by MALDI in-source decay and LIFT-TOF/TOF-MS.
Schnaible V, Wefing S, Resemann A, Suckau D, Bucker A, Wolf-Kummeth S, Hoffmann D., Anal. Chem. 74(19), 2002
PMID: 12380820

AUTHOR UNKNOWN, 0
Reaction mechanism of mammalian mitochondrial cytochrome c oxidase.
Yoshikawa S, Muramoto K, Shinzawa-Itoh K., Adv. Exp. Med. Biol. 748(), 2012
PMID: 22729860
Cofactor-independent oxidases and oxygenases.
Fetzner S, Steiner RA., Appl. Microbiol. Biotechnol. 86(3), 2010
PMID: 20157809
Oxidation of thiol compounds by molecular oxygen in aqueous solutions
Bagiyan, Russian Chem Bul Int Ed 52(), 2003
Sulfenic acid chemistry, detection and cellular lifetime.
Gupta V, Carroll KS., Biochim. Biophys. Acta 1840(2), 2013
PMID: 23748139
Characterization of posttranslational formylglycine formation by luminal components of the endoplasmic reticulum.
Fey J, Balleininger M, Borissenko LV, Schmidt B, von Figura K, Dierks T., J. Biol. Chem. 276(50), 2001
PMID: 11600503
Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44.
Fraldi A, Zito E, Annunziata F, Lombardi A, Cozzolino M, Monti M, Spampanato C, Ballabio A, Pucci P, Sitia R, Cosma MP., Hum. Mol. Genet. 17(17), 2008
PMID: 18508857
Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion
Holder, J. Biol. Chem (), 2015
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26077311
PubMed | Europe PMC

Suchen in

Google Scholar