Inhibitor-based affinity probes for the investigation of JAK signaling pathways

Hoefener M, Pachl F, Kuster B, Sewald N (2015)
PROTEOMICS 15(17): 3066-3074.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hoefener, Michael; Pachl, Fiona; Kuster, Bernhard; Sewald, NorbertUniBi
Abstract / Bemerkung
The Janus Kinase (JAK) signaling pathway plays a key role for many cellular processes and has recently been correlated with neuronal disorders. In order to understand new links of JAK family members with other signaling pathways, chemical proteomics tools with broad kinase coverage are desirable. A probe that shows outstanding kinase selectivity and allows for the enrichment of up to 133 kinases including many mitogen activated kinase (MAPK) members and JAK kinases has been developed. Furthermore, this probe was applied to establish the selectivity profile of the JAK1/2 inhibitor momelotinib that is currently evaluated in clinical phase 3 studies. These results render this probe a valuable tool for the investigation of JAK and JAK related signaling pathways and the selectivity profiling of kinase inhibitors.
Stichworte
Animal proteomics; Selectivity profiling; spectrometry; Mass; Kinase; Chemical proteomics; JAK-signaling
Erscheinungsjahr
2015
Zeitschriftentitel
PROTEOMICS
Band
15
Ausgabe
17
Seite(n)
3066-3074
ISSN
1615-9853
Page URI
https://pub.uni-bielefeld.de/record/2780436

Zitieren

Hoefener M, Pachl F, Kuster B, Sewald N. Inhibitor-based affinity probes for the investigation of JAK signaling pathways. PROTEOMICS. 2015;15(17):3066-3074.
Hoefener, M., Pachl, F., Kuster, B., & Sewald, N. (2015). Inhibitor-based affinity probes for the investigation of JAK signaling pathways. PROTEOMICS, 15(17), 3066-3074. doi:10.1002/pmic.201400324
Hoefener, Michael, Pachl, Fiona, Kuster, Bernhard, and Sewald, Norbert. 2015. “Inhibitor-based affinity probes for the investigation of JAK signaling pathways”. PROTEOMICS 15 (17): 3066-3074.
Hoefener, M., Pachl, F., Kuster, B., and Sewald, N. (2015). Inhibitor-based affinity probes for the investigation of JAK signaling pathways. PROTEOMICS 15, 3066-3074.
Hoefener, M., et al., 2015. Inhibitor-based affinity probes for the investigation of JAK signaling pathways. PROTEOMICS, 15(17), p 3066-3074.
M. Hoefener, et al., “Inhibitor-based affinity probes for the investigation of JAK signaling pathways”, PROTEOMICS, vol. 15, 2015, pp. 3066-3074.
Hoefener, M., Pachl, F., Kuster, B., Sewald, N.: Inhibitor-based affinity probes for the investigation of JAK signaling pathways. PROTEOMICS. 15, 3066-3074 (2015).
Hoefener, Michael, Pachl, Fiona, Kuster, Bernhard, and Sewald, Norbert. “Inhibitor-based affinity probes for the investigation of JAK signaling pathways”. PROTEOMICS 15.17 (2015): 3066-3074.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Pharmacokinetics and Safety of Momelotinib in Subjects With Hepatic or Renal Impairment.
Xin Y, Kawashima J, Weng W, Kwan E, Tarnowski T, Silverman JA., J Clin Pharmacol 58(4), 2018
PMID: 29283448
A phase 1/2, open-label study evaluating twice-daily administration of momelotinib in myelofibrosis.
Gupta V, Mesa RA, Deininger MW, Rivera CE, Sirhan S, Brachmann CB, Collins H, Kawashima J, Xin Y, Verstovsek S., Haematologica 102(1), 2017
PMID: 27634203
Treatment of Myelofibrosis: Old and New Strategies.
Iurlo A, Cattaneo D., Clin Med Insights Blood Disord 10(), 2017
PMID: 28579852
Studying epigenetic complexes and their inhibitors with the proteomics toolbox.
Weigt D, Hopf C, Médard G., Clin Epigenetics 8(), 2016
PMID: 27437033

44 References

Daten bereitgestellt von Europe PubMed Central.

Cytokine signaling in 2002: new surprises in the Jak/Stat pathway.
O'Shea JJ, Gadina M, Schreiber RD., Cell 109 Suppl(), 2002
PMID: 11983158
A road map for those who don't know JAK-STAT.
Aaronson DS, Horvath CM., Science 296(5573), 2002
PMID: 12040185
Protein tyrosine phosphatases in the JAK/STAT pathway.
Xu D, Qu CK., Front. Biosci. 13(), 2008
PMID: 18508557
The JAK-STAT signaling pathway: input and output integration.
Murray PJ., J. Immunol. 178(5), 2007
PMID: 17312100
The JAK-STAT pathway at twenty.
Stark GR, Darnell JE Jr., Immunity 36(4), 2012
PMID: 22520844
Targeting the interleukin-6/Jak/stat pathway in human malignancies.
Sansone P, Bromberg J., J. Clin. Oncol. 30(9), 2012
PMID: 22355058
Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes.
Grandvaux N, Servant MJ, tenOever B, Sen GC, Balachandran S, Barber GN, Lin R, Hiscott J., J. Virol. 76(11), 2002
PMID: 11991981
Transforming growth factor-β (TGF-β)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation.
Liu Y, Liu H, Meyer C, Li J, Nadalin S, Konigsrainer A, Weng H, Dooley S, ten Dijke P., J. Biol. Chem. 288(42), 2013
PMID: 24005672
The Jak/STAT pathway.
Harrison DA., Cold Spring Harb Perspect Biol 4(3), 2012
PMID: 22383755
Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a Phase 2b randomized placebo-controlled dose-ranging study.
Papp KA, Menter A, Strober B, Langley RG, Buonanno M, Wolk R, Gupta P, Krishnaswami S, Tan H, Harness JA., Br. J. Dermatol. 167(3), 2012
PMID: 22924949
Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy.
Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, Liu F, Saunders LM, Mullally A, Abdel-Wahab O, Leung L, Weinstein A, Marubayashi S, Goel A, Gonen M, Estrov Z, Ebert BL, Chiosis G, Nimer SD, Bernstein BE, Verstovsek S, Levine RL., Nature 489(7414), 2012
PMID: 22820254
Structure of a pseudokinase-domain switch that controls oncogenic activation of Jak kinases.
Toms AV, Deshpande A, McNally R, Jeong Y, Rogers JM, Kim CU, Gruner SM, Ficarro SB, Marto JA, Sattler M, Griffin JD, Eck MJ., Nat. Struct. Mol. Biol. 20(10), 2013
PMID: 24013208
SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity.
Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, Harris CC, Herman JG., Nat. Genet. 28(1), 2001
PMID: 11326271
Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq.
Brady JJ, Li M, Suthram S, Jiang H, Wong WH, Blau HM., Nat. Cell Biol. 15(10), 2013
PMID: 23995732
The Jak/STAT pathway is involved in synaptic plasticity.
Nicolas CS, Peineau S, Amici M, Csaba Z, Fafouri A, Javalet C, Collett VJ, Hildebrandt L, Seaton G, Choi SL, Sim SE, Bradley C, Lee K, Zhuo M, Kaang BK, Gressens P, Dournaud P, Fitzjohn SM, Bortolotto ZA, Cho K, Collingridge GL., Neuron 73(2), 2012
PMID: 22284190
The JAK/STAT signaling pathway.
Rawlings JS, Rosler KM, Harrison DA., J. Cell. Sci. 117(Pt 8), 2004
PMID: 15020666
Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology.
Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R., Proc. Natl. Acad. Sci. U.S.A. 97(17), 2000
PMID: 10920198
Mass spectrometry-based proteomics in preclinical drug discovery.
Schirle M, Bantscheff M, Kuster B., Chem. Biol. 19(1), 2012
PMID: 22284356
An efficient proteomics method to identify the cellular targets of protein kinase inhibitors.
Godl K, Wissing J, Kurtenbach A, Habenberger P, Blencke S, Gutbrod H, Salassidis K, Stein-Gerlach M, Missio A, Cotten M, Daub H., Proc. Natl. Acad. Sci. U.S.A. 100(26), 2003
PMID: 14668439
Chemoproteomic approaches to drug target identification and drug profiling.
Bantscheff M, Drewes G., Bioorg. Med. Chem. 20(6), 2011
PMID: 22130419
Target profiling of small molecules by chemical proteomics.
Rix U, Superti-Furga G., Nat. Chem. Biol. 5(9), 2009
PMID: 19690537
Affinity-based tagging of protein families with reversible inhibitors: a concept for functional proteomics.
Hagenstein MC, Mussgnug JH, Lotte K, Plessow R, Brockhinke A, Kruse O, Sewald N., Angew. Chem. Int. Ed. Engl. 42(45), 2003
PMID: 14639736
Chemical tools for activity-based proteomics.
Hagenstein MC, Sewald N., J. Biotechnol. 124(1), 2006
PMID: 16442651
Cellular targets of gefitinib.
Brehmer D, Greff Z, Godl K, Blencke S, Kurtenbach A, Weber M, Muller S, Klebl B, Cotten M, Keri G, Wissing J, Daub H., Cancer Res. 65(2), 2005
PMID: 15695376
A chemical and phosphoproteomic characterization of dasatinib action in lung cancer.
Li J, Rix U, Fang B, Bai Y, Edwards A, Colinge J, Bennett KL, Gao J, Song L, Eschrich S, Superti-Furga G, Koomen J, Haura EB., Nat. Chem. Biol. 6(4), 2010
PMID: 20190765
Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors.
Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G., Nat. Biotechnol. 25(9), 2007
PMID: 17721511
Characterization of a chemical affinity probe targeting Akt kinases.
Pachl F, Plattner P, Ruprecht B, Medard G, Sewald N, Kuster B., J. Proteome Res. 12(8), 2013
PMID: 23795919
Chemical proteomics identifies Nampt as the target of CB30865, an orphan cytotoxic compound.
Fleischer TC, Murphy BR, Flick JS, Terry-Lorenzo RT, Gao ZH, Davis T, McKinnon R, Ostanin K, Willardsen JA, Boniface JJ., Chem. Biol. 17(6), 2010
PMID: 20609415
Chemoproteomics-based kinome profiling and target deconvolution of clinical multi-kinase inhibitors in primary chronic lymphocytic leukemia cells.
Kruse U, Pallasch CP, Bantscheff M, Eberhard D, Frenzel L, Ghidelli S, Maier SK, Werner T, Wendtner CM, Drewes G., Leukemia 25(1), 2010
PMID: 20944678
Investigating RET RTK signaling pathways using an IAP-based activity-profiling approach.
Hofener M, Pachl F, Take T, Fischer von Mollard G, Kuster B, Sewald N., J. Proteome Res. 13(8), 2014
PMID: 24942550
AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
Trott, J. Comput. Chem. 31(), 2009
Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels.
Shevchenko A, Wilm M, Vorm O, Mann M., Anal. Chem. 68(5), 1996
PMID: 8779443
Deciphering membrane-associated molecular processes in target tissue of autoimmune uveitis by label-free quantitative mass spectrometry.
Hauck SM, Dietter J, Kramer RL, Hofmaier F, Zipplies JK, Amann B, Feuchtinger A, Deeg CA, Ueffing M., Mol. Cell Proteomics 9(10), 2010
PMID: 20601722
Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection.
Flanagan ME, Blumenkopf TA, Brissette WH, Brown MF, Casavant JM, Shang-Poa C, Doty JL, Elliott EA, Fisher MB, Hines M, Kent C, Kudlacz EM, Lillie BM, Magnuson KS, McCurdy SP, Munchhof MJ, Perry BD, Sawyer PS, Strelevitz TJ, Subramanyam C, Sun J, Whipple DA, Changelian PS., J. Med. Chem. 53(24), 2010
PMID: 21105711
Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6.
Chrencik JE, Patny A, Leung IK, Korniski B, Emmons TL, Hall T, Weinberg RA, Gormley JA, Williams JM, Day JE, Hirsch JL, Kiefer JR, Leone JW, Fischer HD, Sommers CD, Huang HC, Jacobsen EJ, Tenbrink RE, Tomasselli AG, Benson TE., J. Mol. Biol. 400(3), 2010
PMID: 20478313

AUTHOR UNKNOWN, 0
Discovery and SAR of potent, orally available 2,8-diaryl-quinoxalines as a new class of JAK2 inhibitors.
Pissot-Soldermann C, Gerspacher M, Furet P, Gaul C, Holzer P, McCarthy C, Radimerski T, Regnier CH, Baffert F, Drueckes P, Tavares GA, Vangrevelinghe E, Blasco F, Ottaviani G, Ossola F, Scesa J, Reetz J., Bioorg. Med. Chem. Lett. 20(8), 2010
PMID: 20231096
Phenylaminopyrimidines as inhibitors of Janus kinases (JAKs).
Burns CJ, Bourke DG, Andrau L, Bu X, Charman SA, Donohue AC, Fantino E, Farrugia M, Feutrill JT, Joffe M, Kling MR, Kurek M, Nero TL, Nguyen T, Palmer JT, Phillips I, Shackleford DM, Sikanyika H, Styles M, Su S, Treutlein H, Zeng J, Wilks AF., Bioorg. Med. Chem. Lett. 19(20), 2009
PMID: 19762238
SAR and in vivo evaluation of 4-aryl-2-aminoalkylpyrimidines as potent and selective Janus kinase 2 (JAK2) inhibitors.
Forsyth T, Kearney PC, Kim BG, Johnson HW, Aay N, Arcalas A, Brown DS, Chan V, Chen J, Du H, Epshteyn S, Galan AA, Huynh TP, Ibrahim MA, Kane B, Koltun ES, Mann G, Meyr LE, Lee MS, Lewis GL, Noguchi RT, Pack M, Ridgway BH, Shi X, Takeuchi CS, Zu P, Leahy JW, Nuss JM, Aoyama R, Engst S, Gendreau SB, Kassees R, Li J, Lin SH, Martini JF, Stout T, Tong P, Woolfrey J, Zhang W, Yu P., Bioorg. Med. Chem. Lett. 22(24), 2012
PMID: 23127890
Optimized chemical proteomics assay for kinase inhibitor profiling.
Medard G, Pachl F, Ruprecht B, Klaeger S, Heinzlmeir S, Helm D, Qiao H, Ku X, Wilhelm M, Kuehne T, Wu Z, Dittmann A, Hopf C, Kramer K, Kuster B., J. Proteome Res. 14(3), 2015
PMID: 25660469
Update on the long-term efficacy and safety of momelotinib, a JAK1 and JAK2 inhibitor, for the treatment of myelofibrosis
Pardanani, Blood 122(), 2013
Comparing immobilized kinase inhibitors and covalent ATP probes for proteomic profiling of kinase expression and drug selectivity.
Lemeer S, Zorgiebel C, Ruprecht B, Kohl K, Kuster B., J. Proteome Res. 12(4), 2013
PMID: 23495751
Molecular targeting of inhibitor of apoptosis proteins based on small molecule mimics of natural binding partners.
Kipp RA, Case MA, Wist AD, Cresson CM, Carrell M, Griner E, Wiita A, Albiniak PA, Chai J, Shi Y, Semmelhack MF, McLendon GL., Biochemistry 41(23), 2002
PMID: 12044166
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25959371
PubMed | Europe PMC

Suchen in

Google Scholar